Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach

Detalhes bibliográficos
Autor(a) principal: de Oliveira Batael, Hugo [UNESP]
Data de Publicação: 2020
Outros Autores: Drigo Filho, Elso [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00214-020-02645-5
http://hdl.handle.net/11449/200734
Resumo: The energy eigenvalues for confined H2+ molecule are computed by using the variational method. The approach proposed here uses a trial molecular function for the ground state composed of a linear combination of atomic orbitals for confined hydrogen atom; for other states, we build the trial molecular eigenfunctions inspired in atomic orbitals and by using the orthogonality of the wave functions. The molecule is confined in an impenetrable prolate spheroidal box. The atomic orbital for 1s state is built from a previous suggestion inspired by the factorization of the Schrödinger equation, and for 2s state, we used the Gram–Schmidt process to build a trial atomic function orthogonal with 1s trial function. The main contribution of this work is to propose new wave functions to be used for the confined hydrogen ion molecule. The results obtained are in agreement with other results present in the literature, and the trial functions proposed here can be used to study other confined molecules.
id UNSP_ebef6754422d09d3c44990a85e207763
oai_identifier_str oai:repositorio.unesp.br:11449/200734
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approachExcited stateHydrogen ion moleculeMolecular confinementMolecular orbitalVariational methodThe energy eigenvalues for confined H2+ molecule are computed by using the variational method. The approach proposed here uses a trial molecular function for the ground state composed of a linear combination of atomic orbitals for confined hydrogen atom; for other states, we build the trial molecular eigenfunctions inspired in atomic orbitals and by using the orthogonality of the wave functions. The molecule is confined in an impenetrable prolate spheroidal box. The atomic orbital for 1s state is built from a previous suggestion inspired by the factorization of the Schrödinger equation, and for 2s state, we used the Gram–Schmidt process to build a trial atomic function orthogonal with 1s trial function. The main contribution of this work is to propose new wave functions to be used for the confined hydrogen ion molecule. The results obtained are in agreement with other results present in the literature, and the trial functions proposed here can be used to study other confined molecules.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Physics Department Institute of Biosciences Humanities and Exact Sciences São Paulo State University (UNESP), São José do Rio PretoPhysics Department Institute of Biosciences Humanities and Exact Sciences São Paulo State University (UNESP), São José do Rio PretoCNPq: 164944/2018-4Universidade Estadual Paulista (Unesp)de Oliveira Batael, Hugo [UNESP]Drigo Filho, Elso [UNESP]2020-12-12T02:14:40Z2020-12-12T02:14:40Z2020-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s00214-020-02645-5Theoretical Chemistry Accounts, v. 139, n. 8, 2020.1432-22341432-881Xhttp://hdl.handle.net/11449/20073410.1007/s00214-020-02645-52-s2.0-85087760783Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTheoretical Chemistry Accountsinfo:eu-repo/semantics/openAccess2021-10-23T15:01:11Zoai:repositorio.unesp.br:11449/200734Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:40:29.906286Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach
title Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach
spellingShingle Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach
de Oliveira Batael, Hugo [UNESP]
Excited state
Hydrogen ion molecule
Molecular confinement
Molecular orbital
Variational method
title_short Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach
title_full Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach
title_fullStr Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach
title_full_unstemmed Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach
title_sort Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach
author de Oliveira Batael, Hugo [UNESP]
author_facet de Oliveira Batael, Hugo [UNESP]
Drigo Filho, Elso [UNESP]
author_role author
author2 Drigo Filho, Elso [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv de Oliveira Batael, Hugo [UNESP]
Drigo Filho, Elso [UNESP]
dc.subject.por.fl_str_mv Excited state
Hydrogen ion molecule
Molecular confinement
Molecular orbital
Variational method
topic Excited state
Hydrogen ion molecule
Molecular confinement
Molecular orbital
Variational method
description The energy eigenvalues for confined H2+ molecule are computed by using the variational method. The approach proposed here uses a trial molecular function for the ground state composed of a linear combination of atomic orbitals for confined hydrogen atom; for other states, we build the trial molecular eigenfunctions inspired in atomic orbitals and by using the orthogonality of the wave functions. The molecule is confined in an impenetrable prolate spheroidal box. The atomic orbital for 1s state is built from a previous suggestion inspired by the factorization of the Schrödinger equation, and for 2s state, we used the Gram–Schmidt process to build a trial atomic function orthogonal with 1s trial function. The main contribution of this work is to propose new wave functions to be used for the confined hydrogen ion molecule. The results obtained are in agreement with other results present in the literature, and the trial functions proposed here can be used to study other confined molecules.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:14:40Z
2020-12-12T02:14:40Z
2020-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00214-020-02645-5
Theoretical Chemistry Accounts, v. 139, n. 8, 2020.
1432-2234
1432-881X
http://hdl.handle.net/11449/200734
10.1007/s00214-020-02645-5
2-s2.0-85087760783
url http://dx.doi.org/10.1007/s00214-020-02645-5
http://hdl.handle.net/11449/200734
identifier_str_mv Theoretical Chemistry Accounts, v. 139, n. 8, 2020.
1432-2234
1432-881X
10.1007/s00214-020-02645-5
2-s2.0-85087760783
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Theoretical Chemistry Accounts
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128964876566528