Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/213983 |
Resumo: | This work is based on the analysis of an elastic metamaterial with locally resonant systems, which consists of a cantilever beam with allocation of five equidistant resonators (spring-mass systems). Although typically the tuning (choice of natural frequencies) of these absorbers is done in a uniform way, with all of them adjusted to the same objective frequency, the aim of this study is focused on promoting non-uniform tuning. In particular, the interest in providing a reduction in the total mass added to the system stands out. Therefore, the effects of the proposed modifications on the structure's transmissibility characteristics for some cases of interest, associated with the expansion of the bandgap (vibration attenuation range observed in the metastructure transmissibility due to the allocation of resonators) are presented. For this purpose, a mathematical model referring to the equations of movement of the metamaterial in the frequency domain was implemented. This methodology made it possible to obtain the expected response for the reference case (with uniform tuning), and allowed the individual alteration of the absorber mass parameters. Furthermore, a complementary analysis via finite element methods was elaborated in order to validate the obtained results, and could also provide a practical way to validate the dynamic behavior of the structure. The individual modifications of the resonators (numbered from 1 to 5 from the base to the end of the beam) brought indications that reductions in masses 3 and 5 are more favorable in terms of bandgap enlargement. 22% magnifications were observed through 30% reductions in the masses of these resonators. It was also observed that more abrupt reductions, of 41%, in the mass in resonator 4, together with the respective reductions of 17% and 30% in resonators 3 and 5, contributed significantly to the expansion of the bandgap, which came to about 35%. Resonators 1 and 2, in turn, proved to be more susceptible to favorable contributions by reducing their objective frequency (reflected in the reduction of their stiffness). Thus, the most attractive configuration revealed a significant bandgap expansion of 85%, consisting of 36% and 19% reductions in the stiffness of absorbers 1 and 2 (with maintenance of their mass) with the most optimized configuration described for the other absorbers. Based on these results, an exponential distribution for the resonator masses was proposed, based on the most promising case, and revealed an increase, also expressive, of 71.68%. In addition, the evaluation of a sinusoidal frequency distribution of the resonators, associated with the beam's second mode of vibration, was claimed, revealing significant increases of 47.2% due to more subtle changes in the masses (whose maximum variation became 31.5%). in relation to the initial mass). It is concluded that carefully tuned resonators can significantly improve the model's response (in terms of bandgap bandwidth). In this sense, for structures with mass increase restrictions, this analysis provides a practical way to obtain wider attenuation ranges. |
id |
UNSP_ecdd783a77afc281c79c4b7657cb200e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/213983 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformesAnalysis of an elastic metastructure with non-locally resonant systems uniformsMetamaterialsFinite element analysisMetamateriaisAnálise de elementos finitosVibraçãoThis work is based on the analysis of an elastic metamaterial with locally resonant systems, which consists of a cantilever beam with allocation of five equidistant resonators (spring-mass systems). Although typically the tuning (choice of natural frequencies) of these absorbers is done in a uniform way, with all of them adjusted to the same objective frequency, the aim of this study is focused on promoting non-uniform tuning. In particular, the interest in providing a reduction in the total mass added to the system stands out. Therefore, the effects of the proposed modifications on the structure's transmissibility characteristics for some cases of interest, associated with the expansion of the bandgap (vibration attenuation range observed in the metastructure transmissibility due to the allocation of resonators) are presented. For this purpose, a mathematical model referring to the equations of movement of the metamaterial in the frequency domain was implemented. This methodology made it possible to obtain the expected response for the reference case (with uniform tuning), and allowed the individual alteration of the absorber mass parameters. Furthermore, a complementary analysis via finite element methods was elaborated in order to validate the obtained results, and could also provide a practical way to validate the dynamic behavior of the structure. The individual modifications of the resonators (numbered from 1 to 5 from the base to the end of the beam) brought indications that reductions in masses 3 and 5 are more favorable in terms of bandgap enlargement. 22% magnifications were observed through 30% reductions in the masses of these resonators. It was also observed that more abrupt reductions, of 41%, in the mass in resonator 4, together with the respective reductions of 17% and 30% in resonators 3 and 5, contributed significantly to the expansion of the bandgap, which came to about 35%. Resonators 1 and 2, in turn, proved to be more susceptible to favorable contributions by reducing their objective frequency (reflected in the reduction of their stiffness). Thus, the most attractive configuration revealed a significant bandgap expansion of 85%, consisting of 36% and 19% reductions in the stiffness of absorbers 1 and 2 (with maintenance of their mass) with the most optimized configuration described for the other absorbers. Based on these results, an exponential distribution for the resonator masses was proposed, based on the most promising case, and revealed an increase, also expressive, of 71.68%. In addition, the evaluation of a sinusoidal frequency distribution of the resonators, associated with the beam's second mode of vibration, was claimed, revealing significant increases of 47.2% due to more subtle changes in the masses (whose maximum variation became 31.5%). in relation to the initial mass). It is concluded that carefully tuned resonators can significantly improve the model's response (in terms of bandgap bandwidth). In this sense, for structures with mass increase restrictions, this analysis provides a practical way to obtain wider attenuation ranges.Este trabalho fundamenta-se na análise de um metamaterial elástico com sistemas localmente ressonantes, que consiste de uma viga em balanço com alocação de cinco ressonadores (sistemas massa-mola) equidistantes. Embora tipicamente a sintonia (escolha das frequências naturais) destes absorvedores seja feita de maneira uniforme, com todos ajustados em uma mesma frequência objetivo, o intuito deste estudo concentra-se na promoção de uma sintonia não uniforme. Em especial, destaca-se o interesse em proporcionar uma redução da massa total acrescida ao sistema. Diante disso, são apresentados os efeitos das modificações propostas sobre as características de transmissibilidade da estrutura para alguns casos de interesse, associados à ampliação do bandgap (faixa de atenuação de vibrações observada na transmissibilidade da metaestrutura devido à alocação dos ressonadores). Para essa finalidade foi implementado o modelo matemático referente às equações de movimento do metamaterial no domínio da frequência. Esta metodologia possibilitou a obtenção da resposta esperada para o caso de referência (com sintonia uniforme), e permitiu a alteração individual dos parâmetros de massa dos absorvedores. Ademais, uma análise complementar via métodos dos elementos finitos foi elaborada de modo a ratificar os resultados obtidos, podendo, ainda, proporcionar uma forma prática de validar o comportamento dinâmico da estrutura. As modificações individuais dos ressonadores (enumerados de 1 a 5 da base para a ponta da viga) trouxeram indicativos de que reduções das massas 3 e 5 são mais favoráveis em termos de ampliação do bandgap. Ampliações 22% foram observadas mediante reduções de 30% nas massas destes ressonadores. Observou-se, ainda, que reduções mais abruptas, de 41%, na massa no ressonador 4, junto às respectivas reduções de 17% e 30% nos ressonadores 3 e 5, contribuíram significativamente para a ampliação do bandgap, que chegou a cerca de 35%. Os ressonadores 1 e 2, por sua vez, revelaram-se mais suscetíveis a contribuições favoráveis mediante a redução de sua frequência objetivo (refletida na redução de sua rigidez). Com isso, a configuração mais atrativa revelou uma ampliação expressiva do bandgap, de 85%, consistindo nas reduções de 36% e 19% da rigidez dos absorvedores 1 e 2 (com manutenção de sua massa) junto à configuração mais otimizada descrita para os demais absorvedores. Mediante estes resultados, uma distribuição exponencial para as massas dos ressonadores foi proposta, embasada no caso mais promissor, e revelou uma ampliação, também expressiva, de 71.68%. Em complemento, a avaliação de uma distribuição senoidal de frequências dos ressonadores, associada ao segundo modo de vibrar da viga, foi pleiteada, revelando ampliações significativas de 47.2% em face a modificações mais sutis das massas (cuja variação máxima passou a ser de 31.5% em relação ao valor inicial). Conclui-se que os ressonadores cuidadosamente ajustados podem melhorar significativamente a resposta do modelo (em termos de largura de banda do bandgap). Nesse sentido, para estruturas com restrições quanto ao aumento de massa, esta análise viabiliza uma forma prática para a obtenção de faixas de atenuação mais amplas.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2019/25680-0Universidade Estadual Paulista (Unesp)Souza, Vagner Candido de [UNESP]Universidade Estadual Paulista (Unesp)Melo, Renan Trevizan de2021-08-13T12:33:20Z2021-08-13T12:33:20Z2021-08-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfhttp://hdl.handle.net/11449/213983porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-06T14:18:21Zoai:repositorio.unesp.br:11449/213983Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T14:18:21Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformes Analysis of an elastic metastructure with non-locally resonant systems uniforms |
title |
Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformes |
spellingShingle |
Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformes Melo, Renan Trevizan de Metamaterials Finite element analysis Metamateriais Análise de elementos finitos Vibração |
title_short |
Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformes |
title_full |
Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformes |
title_fullStr |
Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformes |
title_full_unstemmed |
Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformes |
title_sort |
Análise de uma metaestrutura elástica com sistemas localmente ressonantes não uniformes |
author |
Melo, Renan Trevizan de |
author_facet |
Melo, Renan Trevizan de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souza, Vagner Candido de [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Melo, Renan Trevizan de |
dc.subject.por.fl_str_mv |
Metamaterials Finite element analysis Metamateriais Análise de elementos finitos Vibração |
topic |
Metamaterials Finite element analysis Metamateriais Análise de elementos finitos Vibração |
description |
This work is based on the analysis of an elastic metamaterial with locally resonant systems, which consists of a cantilever beam with allocation of five equidistant resonators (spring-mass systems). Although typically the tuning (choice of natural frequencies) of these absorbers is done in a uniform way, with all of them adjusted to the same objective frequency, the aim of this study is focused on promoting non-uniform tuning. In particular, the interest in providing a reduction in the total mass added to the system stands out. Therefore, the effects of the proposed modifications on the structure's transmissibility characteristics for some cases of interest, associated with the expansion of the bandgap (vibration attenuation range observed in the metastructure transmissibility due to the allocation of resonators) are presented. For this purpose, a mathematical model referring to the equations of movement of the metamaterial in the frequency domain was implemented. This methodology made it possible to obtain the expected response for the reference case (with uniform tuning), and allowed the individual alteration of the absorber mass parameters. Furthermore, a complementary analysis via finite element methods was elaborated in order to validate the obtained results, and could also provide a practical way to validate the dynamic behavior of the structure. The individual modifications of the resonators (numbered from 1 to 5 from the base to the end of the beam) brought indications that reductions in masses 3 and 5 are more favorable in terms of bandgap enlargement. 22% magnifications were observed through 30% reductions in the masses of these resonators. It was also observed that more abrupt reductions, of 41%, in the mass in resonator 4, together with the respective reductions of 17% and 30% in resonators 3 and 5, contributed significantly to the expansion of the bandgap, which came to about 35%. Resonators 1 and 2, in turn, proved to be more susceptible to favorable contributions by reducing their objective frequency (reflected in the reduction of their stiffness). Thus, the most attractive configuration revealed a significant bandgap expansion of 85%, consisting of 36% and 19% reductions in the stiffness of absorbers 1 and 2 (with maintenance of their mass) with the most optimized configuration described for the other absorbers. Based on these results, an exponential distribution for the resonator masses was proposed, based on the most promising case, and revealed an increase, also expressive, of 71.68%. In addition, the evaluation of a sinusoidal frequency distribution of the resonators, associated with the beam's second mode of vibration, was claimed, revealing significant increases of 47.2% due to more subtle changes in the masses (whose maximum variation became 31.5%). in relation to the initial mass). It is concluded that carefully tuned resonators can significantly improve the model's response (in terms of bandgap bandwidth). In this sense, for structures with mass increase restrictions, this analysis provides a practical way to obtain wider attenuation ranges. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-13T12:33:20Z 2021-08-13T12:33:20Z 2021-08-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/213983 |
url |
http://hdl.handle.net/11449/213983 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128196190666752 |