Topological dynamics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1002/9781119655022.ch14 http://hdl.handle.net/11449/230091 |
Resumo: | This chapter is dedicated to the study of semidynamical systems generated by generalized ordinary differential equations (ODEs). Besides the existence of a local semidynamical system, it shows the existence of an associated impulsive semidynamical system. The chapter concerns the existence of a local semidynamical system generated by the nonautonomous generalized ODE. It investigates properties of the impulsive generalized ODE associated with the initial value problem. The chapter presents a version of LaSalle’s invariance principle in the context of generalized ODEs. It provides the concept of a limit set on impulsive semidynamical systems in the frame of generalized ODEs, and also presents the concepts of minimality and recurrence. |
id |
UNSP_ed73faef9e02c5ba3f6d06af634a3964 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/230091 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Topological dynamicsImpulsive semidynamical systemLasalle’s invariance principleOrdinary differential equationsSemidynamical systemsThis chapter is dedicated to the study of semidynamical systems generated by generalized ordinary differential equations (ODEs). Besides the existence of a local semidynamical system, it shows the existence of an associated impulsive semidynamical system. The chapter concerns the existence of a local semidynamical system generated by the nonautonomous generalized ODE. It investigates properties of the impulsive generalized ODE associated with the initial value problem. The chapter presents a version of LaSalle’s invariance principle in the context of generalized ODEs. It provides the concept of a limit set on impulsive semidynamical systems in the frame of generalized ODEs, and also presents the concepts of minimality and recurrence.Departamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)Departamento de Matemática Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São PauloDepartamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São PauloDepartamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)Universidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Afonso, Suzete M. [UNESP]Silva, Marielle Ap.Bonotto, Everaldo M.Federson, Márcia2022-04-29T08:37:45Z2022-04-29T08:37:45Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart407-428http://dx.doi.org/10.1002/9781119655022.ch14Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 407-428.http://hdl.handle.net/11449/23009110.1002/9781119655022.ch142-s2.0-85121509259Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGeneralized Ordinary Differential Equations in Abstract Spaces and Applicationsinfo:eu-repo/semantics/openAccess2022-04-29T08:37:45Zoai:repositorio.unesp.br:11449/230091Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:51:13.836213Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Topological dynamics |
title |
Topological dynamics |
spellingShingle |
Topological dynamics Afonso, Suzete M. [UNESP] Impulsive semidynamical system Lasalle’s invariance principle Ordinary differential equations Semidynamical systems |
title_short |
Topological dynamics |
title_full |
Topological dynamics |
title_fullStr |
Topological dynamics |
title_full_unstemmed |
Topological dynamics |
title_sort |
Topological dynamics |
author |
Afonso, Suzete M. [UNESP] |
author_facet |
Afonso, Suzete M. [UNESP] Silva, Marielle Ap. Bonotto, Everaldo M. Federson, Márcia |
author_role |
author |
author2 |
Silva, Marielle Ap. Bonotto, Everaldo M. Federson, Márcia |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Afonso, Suzete M. [UNESP] Silva, Marielle Ap. Bonotto, Everaldo M. Federson, Márcia |
dc.subject.por.fl_str_mv |
Impulsive semidynamical system Lasalle’s invariance principle Ordinary differential equations Semidynamical systems |
topic |
Impulsive semidynamical system Lasalle’s invariance principle Ordinary differential equations Semidynamical systems |
description |
This chapter is dedicated to the study of semidynamical systems generated by generalized ordinary differential equations (ODEs). Besides the existence of a local semidynamical system, it shows the existence of an associated impulsive semidynamical system. The chapter concerns the existence of a local semidynamical system generated by the nonautonomous generalized ODE. It investigates properties of the impulsive generalized ODE associated with the initial value problem. The chapter presents a version of LaSalle’s invariance principle in the context of generalized ODEs. It provides the concept of a limit set on impulsive semidynamical systems in the frame of generalized ODEs, and also presents the concepts of minimality and recurrence. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2022-04-29T08:37:45Z 2022-04-29T08:37:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1002/9781119655022.ch14 Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 407-428. http://hdl.handle.net/11449/230091 10.1002/9781119655022.ch14 2-s2.0-85121509259 |
url |
http://dx.doi.org/10.1002/9781119655022.ch14 http://hdl.handle.net/11449/230091 |
identifier_str_mv |
Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 407-428. 10.1002/9781119655022.ch14 2-s2.0-85121509259 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Generalized Ordinary Differential Equations in Abstract Spaces and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
407-428 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128573768204288 |