Topological dynamics

Detalhes bibliográficos
Autor(a) principal: Afonso, Suzete M. [UNESP]
Data de Publicação: 2021
Outros Autores: Silva, Marielle Ap., Bonotto, Everaldo M., Federson, Márcia
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1002/9781119655022.ch14
http://hdl.handle.net/11449/230091
Resumo: This chapter is dedicated to the study of semidynamical systems generated by generalized ordinary differential equations (ODEs). Besides the existence of a local semidynamical system, it shows the existence of an associated impulsive semidynamical system. The chapter concerns the existence of a local semidynamical system generated by the nonautonomous generalized ODE. It investigates properties of the impulsive generalized ODE associated with the initial value problem. The chapter presents a version of LaSalle’s invariance principle in the context of generalized ODEs. It provides the concept of a limit set on impulsive semidynamical systems in the frame of generalized ODEs, and also presents the concepts of minimality and recurrence.
id UNSP_ed73faef9e02c5ba3f6d06af634a3964
oai_identifier_str oai:repositorio.unesp.br:11449/230091
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Topological dynamicsImpulsive semidynamical systemLasalle’s invariance principleOrdinary differential equationsSemidynamical systemsThis chapter is dedicated to the study of semidynamical systems generated by generalized ordinary differential equations (ODEs). Besides the existence of a local semidynamical system, it shows the existence of an associated impulsive semidynamical system. The chapter concerns the existence of a local semidynamical system generated by the nonautonomous generalized ODE. It investigates properties of the impulsive generalized ODE associated with the initial value problem. The chapter presents a version of LaSalle’s invariance principle in the context of generalized ODEs. It provides the concept of a limit set on impulsive semidynamical systems in the frame of generalized ODEs, and also presents the concepts of minimality and recurrence.Departamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)Departamento de Matemática Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São PauloDepartamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São PauloDepartamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)Universidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Afonso, Suzete M. [UNESP]Silva, Marielle Ap.Bonotto, Everaldo M.Federson, Márcia2022-04-29T08:37:45Z2022-04-29T08:37:45Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart407-428http://dx.doi.org/10.1002/9781119655022.ch14Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 407-428.http://hdl.handle.net/11449/23009110.1002/9781119655022.ch142-s2.0-85121509259Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGeneralized Ordinary Differential Equations in Abstract Spaces and Applicationsinfo:eu-repo/semantics/openAccess2022-04-29T08:37:45Zoai:repositorio.unesp.br:11449/230091Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:51:13.836213Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Topological dynamics
title Topological dynamics
spellingShingle Topological dynamics
Afonso, Suzete M. [UNESP]
Impulsive semidynamical system
Lasalle’s invariance principle
Ordinary differential equations
Semidynamical systems
title_short Topological dynamics
title_full Topological dynamics
title_fullStr Topological dynamics
title_full_unstemmed Topological dynamics
title_sort Topological dynamics
author Afonso, Suzete M. [UNESP]
author_facet Afonso, Suzete M. [UNESP]
Silva, Marielle Ap.
Bonotto, Everaldo M.
Federson, Márcia
author_role author
author2 Silva, Marielle Ap.
Bonotto, Everaldo M.
Federson, Márcia
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Afonso, Suzete M. [UNESP]
Silva, Marielle Ap.
Bonotto, Everaldo M.
Federson, Márcia
dc.subject.por.fl_str_mv Impulsive semidynamical system
Lasalle’s invariance principle
Ordinary differential equations
Semidynamical systems
topic Impulsive semidynamical system
Lasalle’s invariance principle
Ordinary differential equations
Semidynamical systems
description This chapter is dedicated to the study of semidynamical systems generated by generalized ordinary differential equations (ODEs). Besides the existence of a local semidynamical system, it shows the existence of an associated impulsive semidynamical system. The chapter concerns the existence of a local semidynamical system generated by the nonautonomous generalized ODE. It investigates properties of the impulsive generalized ODE associated with the initial value problem. The chapter presents a version of LaSalle’s invariance principle in the context of generalized ODEs. It provides the concept of a limit set on impulsive semidynamical systems in the frame of generalized ODEs, and also presents the concepts of minimality and recurrence.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-04-29T08:37:45Z
2022-04-29T08:37:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1002/9781119655022.ch14
Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 407-428.
http://hdl.handle.net/11449/230091
10.1002/9781119655022.ch14
2-s2.0-85121509259
url http://dx.doi.org/10.1002/9781119655022.ch14
http://hdl.handle.net/11449/230091
identifier_str_mv Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 407-428.
10.1002/9781119655022.ch14
2-s2.0-85121509259
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Generalized Ordinary Differential Equations in Abstract Spaces and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 407-428
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128573768204288