Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights

Detalhes bibliográficos
Autor(a) principal: Cristina De Oliveira, Regiane [UNESP]
Data de Publicação: 2021
Outros Autores: Pontes Ribeiro, Renan Augusto, Cruvinel, Guilherme Henrique, Ciola Amoresi, Rafael Aparecido [UNESP], Carvalho, Maria Helena, Aparecido De Oliveira, Adilson Jesus, Carvalho De Oliveira, Marisa, Ricardo De Lazaro, Sergio, Fernando Da Silva, Luís, Catto, Ariadne Cristina, Simões, Alexandre Zirpoli [UNESP], Sambrano, Julio Ricardo [UNESP], Longo, Elson
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acsami.0c15681
http://hdl.handle.net/11449/208348
Resumo: The magnetic properties and ozone (O3) gas-sensing activity of zinc ferrite (ZnFe2O4) nanoparticles (NPs) were discussed by the combination of the results acquired by experimental procedures and density functional theory simulations. The ZnFe2O4 NPs were synthesized via the microwave-assisted hydrothermal method by varying the reaction time in order to obtain ZnFe2O4 NPs with different exposed surfaces and evaluate the influence on its properties. Regardless of the reaction time employed in the synthesis, the zero-field-cooled and field-cooled magnetization measurements showed superparamagnetic ZnFe2O4 NPs with an average blocking temperature of 12 K. The (100), (110), (111), and (311) surfaces were computationally modeled, displaying the different undercoordinated surfaces. The good sensing activity of ZnFe2O4 NPs was discussed in relation to the presence of the (110) surface, which exhibited low (-0.69 eV) adsorption enthalpy, promoting reversibility and preventing the saturation of the sensor surface. Finally, the O3 gas-sensing mechanism could be explained based on the conduction changes of the ZnFe2O4 surface and the increase in the height of the electron-depletion layer upon exposure toward the target gas. The results obtained allowed us to propose a mechanism for understanding the relationship between the morphological changes and the magnetic and O3 gas-sensing properties of ZnFe2O4 NPs.
id UNSP_ee572c846c7737ba52a5433d0437518d
oai_identifier_str oai:repositorio.unesp.br:11449/208348
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insightsmagnetismmicrowave hydrothermalnanoparticlesO3,sensorZnFe2O4The magnetic properties and ozone (O3) gas-sensing activity of zinc ferrite (ZnFe2O4) nanoparticles (NPs) were discussed by the combination of the results acquired by experimental procedures and density functional theory simulations. The ZnFe2O4 NPs were synthesized via the microwave-assisted hydrothermal method by varying the reaction time in order to obtain ZnFe2O4 NPs with different exposed surfaces and evaluate the influence on its properties. Regardless of the reaction time employed in the synthesis, the zero-field-cooled and field-cooled magnetization measurements showed superparamagnetic ZnFe2O4 NPs with an average blocking temperature of 12 K. The (100), (110), (111), and (311) surfaces were computationally modeled, displaying the different undercoordinated surfaces. The good sensing activity of ZnFe2O4 NPs was discussed in relation to the presence of the (110) surface, which exhibited low (-0.69 eV) adsorption enthalpy, promoting reversibility and preventing the saturation of the sensor surface. Finally, the O3 gas-sensing mechanism could be explained based on the conduction changes of the ZnFe2O4 surface and the increase in the height of the electron-depletion layer upon exposure toward the target gas. The results obtained allowed us to propose a mechanism for understanding the relationship between the morphological changes and the magnetic and O3 gas-sensing properties of ZnFe2O4 NPs.Modeling and Molecular Simulations Group São Paulo State University UNESPFaculty of Engineering of Guaratinguetá São Paulo State University UNESPDepartment of Chemistry State University of Minas Gerais, Av. Paraná, 3001Functional Materials Development Center Federal University of São Carlos UFSCarPhysics Department Federal University of São Carlos (UFSCar), P.O. Box 676LSQM-Laboratory of Chemical Synthesis of Materials Department of Materials Engineering Federal University of Rio Grande Do Norte, P.O. Box 1524Department of Chemistry State University of Ponta Grossa, 4748 General Carlos Cavalcanti AvenueLaboratory of Nanostructured Multifunctional Materials Federal University of São Carlos, Washington Luiz Road, km 235Modeling and Molecular Simulations Group São Paulo State University UNESPFaculty of Engineering of Guaratinguetá São Paulo State University UNESPUniversidade Estadual Paulista (Unesp)State University of Minas GeraisUniversidade Federal de São Carlos (UFSCar)Federal University of Rio Grande Do NorteState University of Ponta GrossaCristina De Oliveira, Regiane [UNESP]Pontes Ribeiro, Renan AugustoCruvinel, Guilherme HenriqueCiola Amoresi, Rafael Aparecido [UNESP]Carvalho, Maria HelenaAparecido De Oliveira, Adilson JesusCarvalho De Oliveira, MarisaRicardo De Lazaro, SergioFernando Da Silva, LuísCatto, Ariadne CristinaSimões, Alexandre Zirpoli [UNESP]Sambrano, Julio Ricardo [UNESP]Longo, Elson2021-06-25T11:10:43Z2021-06-25T11:10:43Z2021-01-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4605-4617http://dx.doi.org/10.1021/acsami.0c15681ACS Applied Materials and Interfaces, v. 13, n. 3, p. 4605-4617, 2021.1944-82521944-8244http://hdl.handle.net/11449/20834810.1021/acsami.0c156812-s2.0-85099929268Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengACS Applied Materials and Interfacesinfo:eu-repo/semantics/openAccess2024-07-02T15:04:05Zoai:repositorio.unesp.br:11449/208348Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:31:27.934985Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights
title Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights
spellingShingle Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights
Cristina De Oliveira, Regiane [UNESP]
magnetism
microwave hydrothermal
nanoparticles
O3,sensor
ZnFe2O4
title_short Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights
title_full Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights
title_fullStr Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights
title_full_unstemmed Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights
title_sort Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights
author Cristina De Oliveira, Regiane [UNESP]
author_facet Cristina De Oliveira, Regiane [UNESP]
Pontes Ribeiro, Renan Augusto
Cruvinel, Guilherme Henrique
Ciola Amoresi, Rafael Aparecido [UNESP]
Carvalho, Maria Helena
Aparecido De Oliveira, Adilson Jesus
Carvalho De Oliveira, Marisa
Ricardo De Lazaro, Sergio
Fernando Da Silva, Luís
Catto, Ariadne Cristina
Simões, Alexandre Zirpoli [UNESP]
Sambrano, Julio Ricardo [UNESP]
Longo, Elson
author_role author
author2 Pontes Ribeiro, Renan Augusto
Cruvinel, Guilherme Henrique
Ciola Amoresi, Rafael Aparecido [UNESP]
Carvalho, Maria Helena
Aparecido De Oliveira, Adilson Jesus
Carvalho De Oliveira, Marisa
Ricardo De Lazaro, Sergio
Fernando Da Silva, Luís
Catto, Ariadne Cristina
Simões, Alexandre Zirpoli [UNESP]
Sambrano, Julio Ricardo [UNESP]
Longo, Elson
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
State University of Minas Gerais
Universidade Federal de São Carlos (UFSCar)
Federal University of Rio Grande Do Norte
State University of Ponta Grossa
dc.contributor.author.fl_str_mv Cristina De Oliveira, Regiane [UNESP]
Pontes Ribeiro, Renan Augusto
Cruvinel, Guilherme Henrique
Ciola Amoresi, Rafael Aparecido [UNESP]
Carvalho, Maria Helena
Aparecido De Oliveira, Adilson Jesus
Carvalho De Oliveira, Marisa
Ricardo De Lazaro, Sergio
Fernando Da Silva, Luís
Catto, Ariadne Cristina
Simões, Alexandre Zirpoli [UNESP]
Sambrano, Julio Ricardo [UNESP]
Longo, Elson
dc.subject.por.fl_str_mv magnetism
microwave hydrothermal
nanoparticles
O3,sensor
ZnFe2O4
topic magnetism
microwave hydrothermal
nanoparticles
O3,sensor
ZnFe2O4
description The magnetic properties and ozone (O3) gas-sensing activity of zinc ferrite (ZnFe2O4) nanoparticles (NPs) were discussed by the combination of the results acquired by experimental procedures and density functional theory simulations. The ZnFe2O4 NPs were synthesized via the microwave-assisted hydrothermal method by varying the reaction time in order to obtain ZnFe2O4 NPs with different exposed surfaces and evaluate the influence on its properties. Regardless of the reaction time employed in the synthesis, the zero-field-cooled and field-cooled magnetization measurements showed superparamagnetic ZnFe2O4 NPs with an average blocking temperature of 12 K. The (100), (110), (111), and (311) surfaces were computationally modeled, displaying the different undercoordinated surfaces. The good sensing activity of ZnFe2O4 NPs was discussed in relation to the presence of the (110) surface, which exhibited low (-0.69 eV) adsorption enthalpy, promoting reversibility and preventing the saturation of the sensor surface. Finally, the O3 gas-sensing mechanism could be explained based on the conduction changes of the ZnFe2O4 surface and the increase in the height of the electron-depletion layer upon exposure toward the target gas. The results obtained allowed us to propose a mechanism for understanding the relationship between the morphological changes and the magnetic and O3 gas-sensing properties of ZnFe2O4 NPs.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T11:10:43Z
2021-06-25T11:10:43Z
2021-01-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acsami.0c15681
ACS Applied Materials and Interfaces, v. 13, n. 3, p. 4605-4617, 2021.
1944-8252
1944-8244
http://hdl.handle.net/11449/208348
10.1021/acsami.0c15681
2-s2.0-85099929268
url http://dx.doi.org/10.1021/acsami.0c15681
http://hdl.handle.net/11449/208348
identifier_str_mv ACS Applied Materials and Interfaces, v. 13, n. 3, p. 4605-4617, 2021.
1944-8252
1944-8244
10.1021/acsami.0c15681
2-s2.0-85099929268
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ACS Applied Materials and Interfaces
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 4605-4617
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129329647845376