Disease persistence and serotype coexistence: An expected feature of human mobility
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.amc.2019.02.061 http://hdl.handle.net/11449/187436 |
Resumo: | We present a stochastic model that mimics dengue transmission when two serotypes of the virus are circulating in a human population connected by a Watts–Strogatz complex network that reflects social interactions (human mobility). The influence of the number of connections per vertex and the network topology on the epidemics is analyzed. The first relation displays a sigmoid curve, while the second one shows that the increase in the network disorder facilitates disease spreading and serotype coexistence. The disease transmission thresholds for three network topology (regular, small-world and random) were obtained. Numerical results show that when coexistence of serotypes is a feasible outcome, negative correlation between the temporal evolution of the two serotype is more likely to occur. This could explain serotype dominance in consecutive epidemics. |
id |
UNSP_ee68d8d4c9dd03d35489237c8f05f0fb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/187436 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Disease persistence and serotype coexistence: An expected feature of human mobilityDengue virusEpidemic thresholdMean-field limitNetwork topologyWe present a stochastic model that mimics dengue transmission when two serotypes of the virus are circulating in a human population connected by a Watts–Strogatz complex network that reflects social interactions (human mobility). The influence of the number of connections per vertex and the network topology on the epidemics is analyzed. The first relation displays a sigmoid curve, while the second one shows that the increase in the network disorder facilitates disease spreading and serotype coexistence. The disease transmission thresholds for three network topology (regular, small-world and random) were obtained. Numerical results show that when coexistence of serotypes is a feasible outcome, negative correlation between the temporal evolution of the two serotype is more likely to occur. This could explain serotype dominance in consecutive epidemics.Institute of Biosciences Department of Biostatistics São Paulo State University (UNESP)Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad UniversitariaInstitute of Biosciences Department of Biostatistics São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Ciudad UniversitariaVilches, T. N. [UNESP]Esteva, L.Ferreira, C. P. [UNESP]2019-10-06T15:36:04Z2019-10-06T15:36:04Z2019-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article161-172http://dx.doi.org/10.1016/j.amc.2019.02.061Applied Mathematics and Computation, v. 355, p. 161-172.0096-3003http://hdl.handle.net/11449/18743610.1016/j.amc.2019.02.0612-s2.0-8506261392320527496982046170000-0002-9404-6098Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics and Computationinfo:eu-repo/semantics/openAccess2021-11-18T17:20:53Zoai:repositorio.unesp.br:11449/187436Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:54:19.084180Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Disease persistence and serotype coexistence: An expected feature of human mobility |
title |
Disease persistence and serotype coexistence: An expected feature of human mobility |
spellingShingle |
Disease persistence and serotype coexistence: An expected feature of human mobility Vilches, T. N. [UNESP] Dengue virus Epidemic threshold Mean-field limit Network topology |
title_short |
Disease persistence and serotype coexistence: An expected feature of human mobility |
title_full |
Disease persistence and serotype coexistence: An expected feature of human mobility |
title_fullStr |
Disease persistence and serotype coexistence: An expected feature of human mobility |
title_full_unstemmed |
Disease persistence and serotype coexistence: An expected feature of human mobility |
title_sort |
Disease persistence and serotype coexistence: An expected feature of human mobility |
author |
Vilches, T. N. [UNESP] |
author_facet |
Vilches, T. N. [UNESP] Esteva, L. Ferreira, C. P. [UNESP] |
author_role |
author |
author2 |
Esteva, L. Ferreira, C. P. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Ciudad Universitaria |
dc.contributor.author.fl_str_mv |
Vilches, T. N. [UNESP] Esteva, L. Ferreira, C. P. [UNESP] |
dc.subject.por.fl_str_mv |
Dengue virus Epidemic threshold Mean-field limit Network topology |
topic |
Dengue virus Epidemic threshold Mean-field limit Network topology |
description |
We present a stochastic model that mimics dengue transmission when two serotypes of the virus are circulating in a human population connected by a Watts–Strogatz complex network that reflects social interactions (human mobility). The influence of the number of connections per vertex and the network topology on the epidemics is analyzed. The first relation displays a sigmoid curve, while the second one shows that the increase in the network disorder facilitates disease spreading and serotype coexistence. The disease transmission thresholds for three network topology (regular, small-world and random) were obtained. Numerical results show that when coexistence of serotypes is a feasible outcome, negative correlation between the temporal evolution of the two serotype is more likely to occur. This could explain serotype dominance in consecutive epidemics. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T15:36:04Z 2019-10-06T15:36:04Z 2019-08-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.amc.2019.02.061 Applied Mathematics and Computation, v. 355, p. 161-172. 0096-3003 http://hdl.handle.net/11449/187436 10.1016/j.amc.2019.02.061 2-s2.0-85062613923 2052749698204617 0000-0002-9404-6098 |
url |
http://dx.doi.org/10.1016/j.amc.2019.02.061 http://hdl.handle.net/11449/187436 |
identifier_str_mv |
Applied Mathematics and Computation, v. 355, p. 161-172. 0096-3003 10.1016/j.amc.2019.02.061 2-s2.0-85062613923 2052749698204617 0000-0002-9404-6098 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Mathematics and Computation |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
161-172 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128996930486272 |