Disease persistence and serotype coexistence: An expected feature of human mobility

Detalhes bibliográficos
Autor(a) principal: Vilches, T. N. [UNESP]
Data de Publicação: 2019
Outros Autores: Esteva, L., Ferreira, C. P. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.amc.2019.02.061
http://hdl.handle.net/11449/187436
Resumo: We present a stochastic model that mimics dengue transmission when two serotypes of the virus are circulating in a human population connected by a Watts–Strogatz complex network that reflects social interactions (human mobility). The influence of the number of connections per vertex and the network topology on the epidemics is analyzed. The first relation displays a sigmoid curve, while the second one shows that the increase in the network disorder facilitates disease spreading and serotype coexistence. The disease transmission thresholds for three network topology (regular, small-world and random) were obtained. Numerical results show that when coexistence of serotypes is a feasible outcome, negative correlation between the temporal evolution of the two serotype is more likely to occur. This could explain serotype dominance in consecutive epidemics.
id UNSP_ee68d8d4c9dd03d35489237c8f05f0fb
oai_identifier_str oai:repositorio.unesp.br:11449/187436
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Disease persistence and serotype coexistence: An expected feature of human mobilityDengue virusEpidemic thresholdMean-field limitNetwork topologyWe present a stochastic model that mimics dengue transmission when two serotypes of the virus are circulating in a human population connected by a Watts–Strogatz complex network that reflects social interactions (human mobility). The influence of the number of connections per vertex and the network topology on the epidemics is analyzed. The first relation displays a sigmoid curve, while the second one shows that the increase in the network disorder facilitates disease spreading and serotype coexistence. The disease transmission thresholds for three network topology (regular, small-world and random) were obtained. Numerical results show that when coexistence of serotypes is a feasible outcome, negative correlation between the temporal evolution of the two serotype is more likely to occur. This could explain serotype dominance in consecutive epidemics.Institute of Biosciences Department of Biostatistics São Paulo State University (UNESP)Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad UniversitariaInstitute of Biosciences Department of Biostatistics São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Ciudad UniversitariaVilches, T. N. [UNESP]Esteva, L.Ferreira, C. P. [UNESP]2019-10-06T15:36:04Z2019-10-06T15:36:04Z2019-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article161-172http://dx.doi.org/10.1016/j.amc.2019.02.061Applied Mathematics and Computation, v. 355, p. 161-172.0096-3003http://hdl.handle.net/11449/18743610.1016/j.amc.2019.02.0612-s2.0-8506261392320527496982046170000-0002-9404-6098Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics and Computationinfo:eu-repo/semantics/openAccess2021-11-18T17:20:53Zoai:repositorio.unesp.br:11449/187436Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:54:19.084180Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Disease persistence and serotype coexistence: An expected feature of human mobility
title Disease persistence and serotype coexistence: An expected feature of human mobility
spellingShingle Disease persistence and serotype coexistence: An expected feature of human mobility
Vilches, T. N. [UNESP]
Dengue virus
Epidemic threshold
Mean-field limit
Network topology
title_short Disease persistence and serotype coexistence: An expected feature of human mobility
title_full Disease persistence and serotype coexistence: An expected feature of human mobility
title_fullStr Disease persistence and serotype coexistence: An expected feature of human mobility
title_full_unstemmed Disease persistence and serotype coexistence: An expected feature of human mobility
title_sort Disease persistence and serotype coexistence: An expected feature of human mobility
author Vilches, T. N. [UNESP]
author_facet Vilches, T. N. [UNESP]
Esteva, L.
Ferreira, C. P. [UNESP]
author_role author
author2 Esteva, L.
Ferreira, C. P. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Ciudad Universitaria
dc.contributor.author.fl_str_mv Vilches, T. N. [UNESP]
Esteva, L.
Ferreira, C. P. [UNESP]
dc.subject.por.fl_str_mv Dengue virus
Epidemic threshold
Mean-field limit
Network topology
topic Dengue virus
Epidemic threshold
Mean-field limit
Network topology
description We present a stochastic model that mimics dengue transmission when two serotypes of the virus are circulating in a human population connected by a Watts–Strogatz complex network that reflects social interactions (human mobility). The influence of the number of connections per vertex and the network topology on the epidemics is analyzed. The first relation displays a sigmoid curve, while the second one shows that the increase in the network disorder facilitates disease spreading and serotype coexistence. The disease transmission thresholds for three network topology (regular, small-world and random) were obtained. Numerical results show that when coexistence of serotypes is a feasible outcome, negative correlation between the temporal evolution of the two serotype is more likely to occur. This could explain serotype dominance in consecutive epidemics.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T15:36:04Z
2019-10-06T15:36:04Z
2019-08-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.amc.2019.02.061
Applied Mathematics and Computation, v. 355, p. 161-172.
0096-3003
http://hdl.handle.net/11449/187436
10.1016/j.amc.2019.02.061
2-s2.0-85062613923
2052749698204617
0000-0002-9404-6098
url http://dx.doi.org/10.1016/j.amc.2019.02.061
http://hdl.handle.net/11449/187436
identifier_str_mv Applied Mathematics and Computation, v. 355, p. 161-172.
0096-3003
10.1016/j.amc.2019.02.061
2-s2.0-85062613923
2052749698204617
0000-0002-9404-6098
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Mathematics and Computation
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 161-172
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128996930486272