Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/S0103-84782009000700050 http://hdl.handle.net/11449/29431 |
Resumo: | A utilização de funções matemáticas para descrever o crescimento animal é antiga. Elas permitem resumir informações em alguns pontos estratégicos do desenvolvimento ponderal e descrever a evolução do peso em função da idade do animal. Também é possível comparar taxas de crescimento de diferentes indivíduos em estados fisiológicos equivalentes. Os modelos de curvas de crescimento mais utilizados na avicultura são os derivados da função Richards, pois apresentam parâmetros que possibilitam interpretação biológica e portanto podem fornecer subsídios para seleção de uma determinada forma da curva de crescimento em aves. Também pode-se utilizar polinômios segmentados para descrever as mudanças de tendência da curva de crescimento animal. Entretanto, existem importantes fatores de variação para os parâmetros das curvas, como a espécie, o sistema de criação, o sexo e suas interações. A adequação dos modelos pode ser verificada pelos valores do coeficiente de determinação (R2), do quadrado médio do resíduo (QM res), do erro de predição médio (EPm), da facilidade de convergência dos dados e pela possibilidade de interpretação biológica dos parâmetros. Estudos envolvendo modelagem e descrição da curva de crescimento e seus componentes são amplamente discutidos na literatura. Porém, programas de seleção que visem a progressos genéticos para a forma da curva não são mencionados. A importância da avaliação dos parâmetros dos modelos de curvas de crescimento é ainda mais relevante já que os maiores ganhos genéticos para peso estão relacionados com seleção para pesos em idades próximas ao ponto de inflexão. A seleção para precocidade pode ser auxiliada com base nos parâmetros do modelo associados à variáveis que descrevem esta característica genética dos animais. Esses parâmetros estão relacionados a importantes características produtivas e reprodutivas e apresentam magnitudes diferentes, de acordo com a espécie, o sexo e o modelo utilizados na avaliação. Outra metodologia utilizada são os modelos de regressão aleatória, permitindo mudanças graduais nas covariâncias entre idades ao longo do tempo e predizendo variâncias e covariâncias em pontos contidos ao longo da trajetória estudada. A utilização de modelos de regressões aleatórias traz como vantagem a separação da variação da curva de crescimento fenotípica em seus diferentes efeitos genético aditivo e de ambiente permanente individual, mediante a determinação dos coeficientes de regressão aleatórios para esses diferentes efeitos. Além disto, não há necessidade de utilizar fatores de ajuste para a idade. Esta revisão teve por objetivos levantar os principais modelos matemáticos frequentistas utilizados no estudo de curvas de crescimento de aves, com maior ênfase nos empregados com a finalidade de estimar parâmetros genéticos e fenotípicos. |
id |
UNSP_efb8e4a6ab304397baf4e521f513f88c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/29431 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animalMathematic models applied to describe growth curves in poultry applied to animal breedinggrowth parametersgrowth modelsGrowth ratePoultryaviculturamodelos estatísticos para crescimentoparâmetros do crescimentoTaxa de crescimentoA utilização de funções matemáticas para descrever o crescimento animal é antiga. Elas permitem resumir informações em alguns pontos estratégicos do desenvolvimento ponderal e descrever a evolução do peso em função da idade do animal. Também é possível comparar taxas de crescimento de diferentes indivíduos em estados fisiológicos equivalentes. Os modelos de curvas de crescimento mais utilizados na avicultura são os derivados da função Richards, pois apresentam parâmetros que possibilitam interpretação biológica e portanto podem fornecer subsídios para seleção de uma determinada forma da curva de crescimento em aves. Também pode-se utilizar polinômios segmentados para descrever as mudanças de tendência da curva de crescimento animal. Entretanto, existem importantes fatores de variação para os parâmetros das curvas, como a espécie, o sistema de criação, o sexo e suas interações. A adequação dos modelos pode ser verificada pelos valores do coeficiente de determinação (R2), do quadrado médio do resíduo (QM res), do erro de predição médio (EPm), da facilidade de convergência dos dados e pela possibilidade de interpretação biológica dos parâmetros. Estudos envolvendo modelagem e descrição da curva de crescimento e seus componentes são amplamente discutidos na literatura. Porém, programas de seleção que visem a progressos genéticos para a forma da curva não são mencionados. A importância da avaliação dos parâmetros dos modelos de curvas de crescimento é ainda mais relevante já que os maiores ganhos genéticos para peso estão relacionados com seleção para pesos em idades próximas ao ponto de inflexão. A seleção para precocidade pode ser auxiliada com base nos parâmetros do modelo associados à variáveis que descrevem esta característica genética dos animais. Esses parâmetros estão relacionados a importantes características produtivas e reprodutivas e apresentam magnitudes diferentes, de acordo com a espécie, o sexo e o modelo utilizados na avaliação. Outra metodologia utilizada são os modelos de regressão aleatória, permitindo mudanças graduais nas covariâncias entre idades ao longo do tempo e predizendo variâncias e covariâncias em pontos contidos ao longo da trajetória estudada. A utilização de modelos de regressões aleatórias traz como vantagem a separação da variação da curva de crescimento fenotípica em seus diferentes efeitos genético aditivo e de ambiente permanente individual, mediante a determinação dos coeficientes de regressão aleatórios para esses diferentes efeitos. Além disto, não há necessidade de utilizar fatores de ajuste para a idade. Esta revisão teve por objetivos levantar os principais modelos matemáticos frequentistas utilizados no estudo de curvas de crescimento de aves, com maior ênfase nos empregados com a finalidade de estimar parâmetros genéticos e fenotípicos.The use of mathematical models to describe animal growth is not recent. They are able to summarize information on strategic dots of animal growth development and to describe the evolution of weight according to the animal age. It is also possible to compare different individuals in similar physiologic stages. The growth models most commonly used in poultry breeding are derived from Richards function, and they present parameters that provide biological interpretation and knowledge to select a specific shape of growth curve in poultry. However, it is also possible to use segmented polynomials to describe trend changes during the animal growth. One needs to consider important variables affecting the growth curve parameters estimates, such as, production system, specie, sex and their interactions. Model Goodness-of-fit can be based on many criteria such as coefficient of determination (R2), residual mean squared error, (LSe), estimated predicted mean error (PME), the easiness the analysis to reach convergence and the possibility of biological interpretation of parameters. Studies involving modeling and description of growth curve and their components are described in literature, but, there is no selection programs applied to the growth curve shape. The importance of determinating the parameters of growth curve models is more relevant when considering that most of the genetic gains for growth traits are related to selection, on weights near to the inflexion point. Often, selection to fast growth is important in all breeding programs, and could be based on genetic parameters of the growth curve parameters. These parameters are related to important productive and reproductive traits, and present different values, according to specie, sex and models used in evaluation. Alternatively, other methodology used is random regression models, allowing graduation changes in (co) variances between ages during the time and predicting (co)variances during the studied trajectory. The use of random regression models has the advantage to allow the partition of phenotypic growth curve (co)variance in its different genetic additive and the permanent environment effects, using random regression coefficients for each different effect. This review aimed at summarizing the main frequentists mathematical models used in the studies of growth curves in birds, emphasizing those applied to estimate genetic and phenotypic parameters.Universidade Federal Rural do Semiárido Departamento de Ciências AnimaisUniversidade Estadual Paulista Faculdade de Ciências Agrárias e Veterinárias Departamento de ZootecniaUniversidade Estadual Paulista Faculdade de Ciências Agrárias e Veterinárias Departamento de ZootecniaUniversidade Federal de Santa Maria (UFSM)Universidade Federal Rural do Semi-Árido (UFERSA)Universidade Estadual Paulista (Unesp)Tholon, PatriciaQueiroz, Sandra Aidar de [UNESP]2014-05-20T15:15:01Z2014-05-20T15:15:01Z2009-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2261-2269application/pdfhttp://dx.doi.org/10.1590/S0103-84782009000700050Ciência Rural. Universidade Federal de Santa Maria (UFSM), v. 39, n. 7, p. 2261-2269, 2009.0103-8478http://hdl.handle.net/11449/2943110.1590/S0103-84782009000700050S0103-84782009000700050WOS:000270230400050S0103-84782009000700050.pdf9096087557977610SciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporCiência Rural0.5250,337info:eu-repo/semantics/openAccess2024-06-07T18:41:31Zoai:repositorio.unesp.br:11449/29431Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:07:06.361307Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal Mathematic models applied to describe growth curves in poultry applied to animal breeding |
title |
Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal |
spellingShingle |
Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal Tholon, Patricia growth parameters growth models Growth rate Poultry avicultura modelos estatísticos para crescimento parâmetros do crescimento Taxa de crescimento |
title_short |
Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal |
title_full |
Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal |
title_fullStr |
Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal |
title_full_unstemmed |
Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal |
title_sort |
Modelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animal |
author |
Tholon, Patricia |
author_facet |
Tholon, Patricia Queiroz, Sandra Aidar de [UNESP] |
author_role |
author |
author2 |
Queiroz, Sandra Aidar de [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido (UFERSA) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Tholon, Patricia Queiroz, Sandra Aidar de [UNESP] |
dc.subject.por.fl_str_mv |
growth parameters growth models Growth rate Poultry avicultura modelos estatísticos para crescimento parâmetros do crescimento Taxa de crescimento |
topic |
growth parameters growth models Growth rate Poultry avicultura modelos estatísticos para crescimento parâmetros do crescimento Taxa de crescimento |
description |
A utilização de funções matemáticas para descrever o crescimento animal é antiga. Elas permitem resumir informações em alguns pontos estratégicos do desenvolvimento ponderal e descrever a evolução do peso em função da idade do animal. Também é possível comparar taxas de crescimento de diferentes indivíduos em estados fisiológicos equivalentes. Os modelos de curvas de crescimento mais utilizados na avicultura são os derivados da função Richards, pois apresentam parâmetros que possibilitam interpretação biológica e portanto podem fornecer subsídios para seleção de uma determinada forma da curva de crescimento em aves. Também pode-se utilizar polinômios segmentados para descrever as mudanças de tendência da curva de crescimento animal. Entretanto, existem importantes fatores de variação para os parâmetros das curvas, como a espécie, o sistema de criação, o sexo e suas interações. A adequação dos modelos pode ser verificada pelos valores do coeficiente de determinação (R2), do quadrado médio do resíduo (QM res), do erro de predição médio (EPm), da facilidade de convergência dos dados e pela possibilidade de interpretação biológica dos parâmetros. Estudos envolvendo modelagem e descrição da curva de crescimento e seus componentes são amplamente discutidos na literatura. Porém, programas de seleção que visem a progressos genéticos para a forma da curva não são mencionados. A importância da avaliação dos parâmetros dos modelos de curvas de crescimento é ainda mais relevante já que os maiores ganhos genéticos para peso estão relacionados com seleção para pesos em idades próximas ao ponto de inflexão. A seleção para precocidade pode ser auxiliada com base nos parâmetros do modelo associados à variáveis que descrevem esta característica genética dos animais. Esses parâmetros estão relacionados a importantes características produtivas e reprodutivas e apresentam magnitudes diferentes, de acordo com a espécie, o sexo e o modelo utilizados na avaliação. Outra metodologia utilizada são os modelos de regressão aleatória, permitindo mudanças graduais nas covariâncias entre idades ao longo do tempo e predizendo variâncias e covariâncias em pontos contidos ao longo da trajetória estudada. A utilização de modelos de regressões aleatórias traz como vantagem a separação da variação da curva de crescimento fenotípica em seus diferentes efeitos genético aditivo e de ambiente permanente individual, mediante a determinação dos coeficientes de regressão aleatórios para esses diferentes efeitos. Além disto, não há necessidade de utilizar fatores de ajuste para a idade. Esta revisão teve por objetivos levantar os principais modelos matemáticos frequentistas utilizados no estudo de curvas de crescimento de aves, com maior ênfase nos empregados com a finalidade de estimar parâmetros genéticos e fenotípicos. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-10-01 2014-05-20T15:15:01Z 2014-05-20T15:15:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S0103-84782009000700050 Ciência Rural. Universidade Federal de Santa Maria (UFSM), v. 39, n. 7, p. 2261-2269, 2009. 0103-8478 http://hdl.handle.net/11449/29431 10.1590/S0103-84782009000700050 S0103-84782009000700050 WOS:000270230400050 S0103-84782009000700050.pdf 9096087557977610 |
url |
http://dx.doi.org/10.1590/S0103-84782009000700050 http://hdl.handle.net/11449/29431 |
identifier_str_mv |
Ciência Rural. Universidade Federal de Santa Maria (UFSM), v. 39, n. 7, p. 2261-2269, 2009. 0103-8478 10.1590/S0103-84782009000700050 S0103-84782009000700050 WOS:000270230400050 S0103-84782009000700050.pdf 9096087557977610 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Ciência Rural 0.525 0,337 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2261-2269 application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria (UFSM) |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria (UFSM) |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128897456275456 |