Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s00289-022-04257-4 http://hdl.handle.net/11449/240029 |
Resumo: | The ability to undergo from a deformed shape to its original shape when induced by an external stimulus brought many benefits in the polymer field. Despite the shape recovery, the structure vs property relationship has to be profoundly understood aiming to highlight the most important factors regarding the shape-memory polyurethanes (SMPUs). Based on a previous study, we show herein a complete description of the dynamic mechanical analysis for twelve different SMPUs. Also, it is presented an artificial neural network approach followed by a response surface methodology that allows modeling the dynamic mechanical curves with high reliability and low error. This principle expands the design versatility for SMP, which has broad implications in many other areas including soft robotics, flexible electronics, and medical devices. |
id |
UNSP_f02ef85be5af5474ec1ae5296dac1088 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/240029 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Dynamic mechanical and thermogravimetric properties of synthetized polyurethanesArtificial neural networkBiomedical applicationsDynamic mechanical propertiesPolyurethaneSurface response methodologyThe ability to undergo from a deformed shape to its original shape when induced by an external stimulus brought many benefits in the polymer field. Despite the shape recovery, the structure vs property relationship has to be profoundly understood aiming to highlight the most important factors regarding the shape-memory polyurethanes (SMPUs). Based on a previous study, we show herein a complete description of the dynamic mechanical analysis for twelve different SMPUs. Also, it is presented an artificial neural network approach followed by a response surface methodology that allows modeling the dynamic mechanical curves with high reliability and low error. This principle expands the design versatility for SMP, which has broad implications in many other areas including soft robotics, flexible electronics, and medical devices.Mantova Indústria de Tubos Plásticos Ltda., Rio Grande do SulPostgraduate Program in Mining Metallurgical and Materials Engineering Federal University of Rio Grande do Sul (UFRGS)Department of Materials and Technology School of Engineering São Paulo State University (Unesp), São PauloPostgraduate Program in Materials Science and Engineering (PGMAT) University of Caxias Do Sul (UCS), RSDepartment of Materials and Technology School of Engineering São Paulo State University (Unesp), São PauloMantova Indústria de Tubos Plásticos Ltda.Federal University of Rio Grande do Sul (UFRGS)Universidade Estadual Paulista (UNESP)University of Caxias Do Sul (UCS)Ornaghi Jr, Heitor LuizNeves, Roberta MottaMonticeli, Francisco Maciel [UNESP]Agnol, Lucas Dall2023-03-01T19:58:20Z2023-03-01T19:58:20Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s00289-022-04257-4Polymer Bulletin.1436-24490170-0839http://hdl.handle.net/11449/24002910.1007/s00289-022-04257-42-s2.0-85129789335Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPolymer Bulletininfo:eu-repo/semantics/openAccess2023-03-01T19:58:20Zoai:repositorio.unesp.br:11449/240029Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:38:35.134770Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes |
title |
Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes |
spellingShingle |
Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes Ornaghi Jr, Heitor Luiz Artificial neural network Biomedical applications Dynamic mechanical properties Polyurethane Surface response methodology |
title_short |
Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes |
title_full |
Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes |
title_fullStr |
Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes |
title_full_unstemmed |
Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes |
title_sort |
Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes |
author |
Ornaghi Jr, Heitor Luiz |
author_facet |
Ornaghi Jr, Heitor Luiz Neves, Roberta Motta Monticeli, Francisco Maciel [UNESP] Agnol, Lucas Dall |
author_role |
author |
author2 |
Neves, Roberta Motta Monticeli, Francisco Maciel [UNESP] Agnol, Lucas Dall |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Mantova Indústria de Tubos Plásticos Ltda. Federal University of Rio Grande do Sul (UFRGS) Universidade Estadual Paulista (UNESP) University of Caxias Do Sul (UCS) |
dc.contributor.author.fl_str_mv |
Ornaghi Jr, Heitor Luiz Neves, Roberta Motta Monticeli, Francisco Maciel [UNESP] Agnol, Lucas Dall |
dc.subject.por.fl_str_mv |
Artificial neural network Biomedical applications Dynamic mechanical properties Polyurethane Surface response methodology |
topic |
Artificial neural network Biomedical applications Dynamic mechanical properties Polyurethane Surface response methodology |
description |
The ability to undergo from a deformed shape to its original shape when induced by an external stimulus brought many benefits in the polymer field. Despite the shape recovery, the structure vs property relationship has to be profoundly understood aiming to highlight the most important factors regarding the shape-memory polyurethanes (SMPUs). Based on a previous study, we show herein a complete description of the dynamic mechanical analysis for twelve different SMPUs. Also, it is presented an artificial neural network approach followed by a response surface methodology that allows modeling the dynamic mechanical curves with high reliability and low error. This principle expands the design versatility for SMP, which has broad implications in many other areas including soft robotics, flexible electronics, and medical devices. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 2023-03-01T19:58:20Z 2023-03-01T19:58:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00289-022-04257-4 Polymer Bulletin. 1436-2449 0170-0839 http://hdl.handle.net/11449/240029 10.1007/s00289-022-04257-4 2-s2.0-85129789335 |
url |
http://dx.doi.org/10.1007/s00289-022-04257-4 http://hdl.handle.net/11449/240029 |
identifier_str_mv |
Polymer Bulletin. 1436-2449 0170-0839 10.1007/s00289-022-04257-4 2-s2.0-85129789335 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Polymer Bulletin |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128257698037760 |