Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes

Detalhes bibliográficos
Autor(a) principal: Ornaghi Jr, Heitor Luiz
Data de Publicação: 2022
Outros Autores: Neves, Roberta Motta, Monticeli, Francisco Maciel [UNESP], Agnol, Lucas Dall
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00289-022-04257-4
http://hdl.handle.net/11449/240029
Resumo: The ability to undergo from a deformed shape to its original shape when induced by an external stimulus brought many benefits in the polymer field. Despite the shape recovery, the structure vs property relationship has to be profoundly understood aiming to highlight the most important factors regarding the shape-memory polyurethanes (SMPUs). Based on a previous study, we show herein a complete description of the dynamic mechanical analysis for twelve different SMPUs. Also, it is presented an artificial neural network approach followed by a response surface methodology that allows modeling the dynamic mechanical curves with high reliability and low error. This principle expands the design versatility for SMP, which has broad implications in many other areas including soft robotics, flexible electronics, and medical devices.
id UNSP_f02ef85be5af5474ec1ae5296dac1088
oai_identifier_str oai:repositorio.unesp.br:11449/240029
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Dynamic mechanical and thermogravimetric properties of synthetized polyurethanesArtificial neural networkBiomedical applicationsDynamic mechanical propertiesPolyurethaneSurface response methodologyThe ability to undergo from a deformed shape to its original shape when induced by an external stimulus brought many benefits in the polymer field. Despite the shape recovery, the structure vs property relationship has to be profoundly understood aiming to highlight the most important factors regarding the shape-memory polyurethanes (SMPUs). Based on a previous study, we show herein a complete description of the dynamic mechanical analysis for twelve different SMPUs. Also, it is presented an artificial neural network approach followed by a response surface methodology that allows modeling the dynamic mechanical curves with high reliability and low error. This principle expands the design versatility for SMP, which has broad implications in many other areas including soft robotics, flexible electronics, and medical devices.Mantova Indústria de Tubos Plásticos Ltda., Rio Grande do SulPostgraduate Program in Mining Metallurgical and Materials Engineering Federal University of Rio Grande do Sul (UFRGS)Department of Materials and Technology School of Engineering São Paulo State University (Unesp), São PauloPostgraduate Program in Materials Science and Engineering (PGMAT) University of Caxias Do Sul (UCS), RSDepartment of Materials and Technology School of Engineering São Paulo State University (Unesp), São PauloMantova Indústria de Tubos Plásticos Ltda.Federal University of Rio Grande do Sul (UFRGS)Universidade Estadual Paulista (UNESP)University of Caxias Do Sul (UCS)Ornaghi Jr, Heitor LuizNeves, Roberta MottaMonticeli, Francisco Maciel [UNESP]Agnol, Lucas Dall2023-03-01T19:58:20Z2023-03-01T19:58:20Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s00289-022-04257-4Polymer Bulletin.1436-24490170-0839http://hdl.handle.net/11449/24002910.1007/s00289-022-04257-42-s2.0-85129789335Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPolymer Bulletininfo:eu-repo/semantics/openAccess2023-03-01T19:58:20Zoai:repositorio.unesp.br:11449/240029Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:38:35.134770Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes
title Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes
spellingShingle Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes
Ornaghi Jr, Heitor Luiz
Artificial neural network
Biomedical applications
Dynamic mechanical properties
Polyurethane
Surface response methodology
title_short Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes
title_full Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes
title_fullStr Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes
title_full_unstemmed Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes
title_sort Dynamic mechanical and thermogravimetric properties of synthetized polyurethanes
author Ornaghi Jr, Heitor Luiz
author_facet Ornaghi Jr, Heitor Luiz
Neves, Roberta Motta
Monticeli, Francisco Maciel [UNESP]
Agnol, Lucas Dall
author_role author
author2 Neves, Roberta Motta
Monticeli, Francisco Maciel [UNESP]
Agnol, Lucas Dall
author2_role author
author
author
dc.contributor.none.fl_str_mv Mantova Indústria de Tubos Plásticos Ltda.
Federal University of Rio Grande do Sul (UFRGS)
Universidade Estadual Paulista (UNESP)
University of Caxias Do Sul (UCS)
dc.contributor.author.fl_str_mv Ornaghi Jr, Heitor Luiz
Neves, Roberta Motta
Monticeli, Francisco Maciel [UNESP]
Agnol, Lucas Dall
dc.subject.por.fl_str_mv Artificial neural network
Biomedical applications
Dynamic mechanical properties
Polyurethane
Surface response methodology
topic Artificial neural network
Biomedical applications
Dynamic mechanical properties
Polyurethane
Surface response methodology
description The ability to undergo from a deformed shape to its original shape when induced by an external stimulus brought many benefits in the polymer field. Despite the shape recovery, the structure vs property relationship has to be profoundly understood aiming to highlight the most important factors regarding the shape-memory polyurethanes (SMPUs). Based on a previous study, we show herein a complete description of the dynamic mechanical analysis for twelve different SMPUs. Also, it is presented an artificial neural network approach followed by a response surface methodology that allows modeling the dynamic mechanical curves with high reliability and low error. This principle expands the design versatility for SMP, which has broad implications in many other areas including soft robotics, flexible electronics, and medical devices.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-03-01T19:58:20Z
2023-03-01T19:58:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00289-022-04257-4
Polymer Bulletin.
1436-2449
0170-0839
http://hdl.handle.net/11449/240029
10.1007/s00289-022-04257-4
2-s2.0-85129789335
url http://dx.doi.org/10.1007/s00289-022-04257-4
http://hdl.handle.net/11449/240029
identifier_str_mv Polymer Bulletin.
1436-2449
0170-0839
10.1007/s00289-022-04257-4
2-s2.0-85129789335
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Polymer Bulletin
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128257698037760