Summation of partial wave expansions in the scattering by long range potentials. I

Detalhes bibliográficos
Autor(a) principal: Garibotti, C. R.
Data de Publicação: 1977
Outros Autores: Grinstein, F. F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1063/1.523742
http://hdl.handle.net/11449/231075
Resumo: Punctual Padé approximants are considered as a summation method of the slowly convergent partial wave expansions associated with the scattering by long range potentials. The asymptotic behavior of the family of sequences [n,n + m], with fixed n, of the Padé table, is studied. A set of theorems are proven, which show that their rate of convergence increases rapidly with n. It is noted that these approximants may be computed by means of the recurrent ε and η algorithms. © 1978 American Institute of Physics.
id UNSP_f09a572745afef6c36c62416217c2a04
oai_identifier_str oai:repositorio.unesp.br:11449/231075
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Summation of partial wave expansions in the scattering by long range potentials. IPunctual Padé approximants are considered as a summation method of the slowly convergent partial wave expansions associated with the scattering by long range potentials. The asymptotic behavior of the family of sequences [n,n + m], with fixed n, of the Padé table, is studied. A set of theorems are proven, which show that their rate of convergence increases rapidly with n. It is noted that these approximants may be computed by means of the recurrent ε and η algorithms. © 1978 American Institute of Physics.Instituto de Física Téorica, Rua Pamplona 145, 01405, São PauloDepto. de Física UNR, RosarioCons. Nac. Invest. Cientif. y Tecn. of ArgentinaInstituto de Física TéoricaUNRCons. Nac. Invest. Cientif. y Tecn. of ArgentinaGaribotti, C. R.Grinstein, F. F.2022-04-29T08:43:26Z2022-04-29T08:43:26Z1977-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article821-829http://dx.doi.org/10.1063/1.523742Journal of Mathematical Physics, v. 19, n. 4, p. 821-829, 1977.0022-2488http://hdl.handle.net/11449/23107510.1063/1.5237422-s2.0-36749112067Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Mathematical Physics240632info:eu-repo/semantics/openAccess2023-05-19T18:43:11Zoai:repositorio.unesp.br:11449/231075Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:18:09.265626Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Summation of partial wave expansions in the scattering by long range potentials. I
title Summation of partial wave expansions in the scattering by long range potentials. I
spellingShingle Summation of partial wave expansions in the scattering by long range potentials. I
Garibotti, C. R.
title_short Summation of partial wave expansions in the scattering by long range potentials. I
title_full Summation of partial wave expansions in the scattering by long range potentials. I
title_fullStr Summation of partial wave expansions in the scattering by long range potentials. I
title_full_unstemmed Summation of partial wave expansions in the scattering by long range potentials. I
title_sort Summation of partial wave expansions in the scattering by long range potentials. I
author Garibotti, C. R.
author_facet Garibotti, C. R.
Grinstein, F. F.
author_role author
author2 Grinstein, F. F.
author2_role author
dc.contributor.none.fl_str_mv Instituto de Física Téorica
UNR
Cons. Nac. Invest. Cientif. y Tecn. of Argentina
dc.contributor.author.fl_str_mv Garibotti, C. R.
Grinstein, F. F.
description Punctual Padé approximants are considered as a summation method of the slowly convergent partial wave expansions associated with the scattering by long range potentials. The asymptotic behavior of the family of sequences [n,n + m], with fixed n, of the Padé table, is studied. A set of theorems are proven, which show that their rate of convergence increases rapidly with n. It is noted that these approximants may be computed by means of the recurrent ε and η algorithms. © 1978 American Institute of Physics.
publishDate 1977
dc.date.none.fl_str_mv 1977-01-01
2022-04-29T08:43:26Z
2022-04-29T08:43:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1063/1.523742
Journal of Mathematical Physics, v. 19, n. 4, p. 821-829, 1977.
0022-2488
http://hdl.handle.net/11449/231075
10.1063/1.523742
2-s2.0-36749112067
url http://dx.doi.org/10.1063/1.523742
http://hdl.handle.net/11449/231075
identifier_str_mv Journal of Mathematical Physics, v. 19, n. 4, p. 821-829, 1977.
0022-2488
10.1063/1.523742
2-s2.0-36749112067
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Mathematical Physics
240632
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 821-829
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128343098261504