PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/185095 |
Resumo: | Remote sensing can be a powerful tool for long-teen spatial and temporal water quality monitoring if proper sets of algorithms are available. To estimate optically significant substances (OSS) by satellite images the water-leaving reflectance (pw) must be accurately estimated because it is directly related to the inherent optical properties (IOPs). For an accurate pw an effective atmospheric correction method must be used to remote the contribution of the atmospheric path radiance. The C2RCC processor has a set of algorithms capable of reduce the atmospheric path radiance, estimate the IOPs and then the OSS concentrations. But, the C2RCC was only tested using OL Cl/Sentine1-3 images for coastal areas, therefore, is of huge importance to know about their accuracy for inland waters. The results showed that the pw (with errors from 26.57 to 97.48%), IOPs (with errors from 39.77 to 99.90%) and OSS concentrations (with errors from 49.29 to 148.40%) estimated by C2RCC have no correlation with in situ data. For a long-teen use of OL Cl/Sentine1-3 images researchers must try to use another atmospheric correction and IOPs estimation methods when studying inland waters. |
id |
UNSP_f3129a3a9ca4e8c5c90e23bd8ca89cd5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/185095 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGESSentinel-3C2RCCinland waterIOPsRemote sensing can be a powerful tool for long-teen spatial and temporal water quality monitoring if proper sets of algorithms are available. To estimate optically significant substances (OSS) by satellite images the water-leaving reflectance (pw) must be accurately estimated because it is directly related to the inherent optical properties (IOPs). For an accurate pw an effective atmospheric correction method must be used to remote the contribution of the atmospheric path radiance. The C2RCC processor has a set of algorithms capable of reduce the atmospheric path radiance, estimate the IOPs and then the OSS concentrations. But, the C2RCC was only tested using OL Cl/Sentine1-3 images for coastal areas, therefore, is of huge importance to know about their accuracy for inland waters. The results showed that the pw (with errors from 26.57 to 97.48%), IOPs (with errors from 39.77 to 99.90%) and OSS concentrations (with errors from 49.29 to 148.40%) estimated by C2RCC have no correlation with in situ data. For a long-teen use of OL Cl/Sentine1-3 images researchers must try to use another atmospheric correction and IOPs estimation methods when studying inland waters.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, UNESP, Dept Environm Engn, Sao Jose Dos Campos, SP, BrazilSao Paulo State Univ, UNESP, Dept Cartog, Presidente Prudente, SP, BrazilFed Inst Educ Sci & Technol Para, Castanhal, PA, BrazilSao Paulo State Univ, UNESP, Dept Environm Engn, Sao Jose Dos Campos, SP, BrazilSao Paulo State Univ, UNESP, Dept Cartog, Presidente Prudente, SP, BrazilFAPESP: 2015/21586-9IeeeUniversidade Estadual Paulista (Unesp)Fed Inst Educ Sci & Technol ParaAlcantara, Enner [UNESP]Andrade, Caroline Pilfer de [UNESP]Gomes, Ana Carolina [UNESP]Bernardo, Nariane [UNESP]Carmo, Alisson Fernando [UNESP]Rodrigues, ThananWatanabe, Fernanda [UNESP]IEEE2019-10-04T12:32:40Z2019-10-04T12:32:40Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject9300-9303Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 9300-9303, 2018.2153-6996http://hdl.handle.net/11449/185095WOS:00045103980821466913103944104900000-0002-8077-2865Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIgarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposiuminfo:eu-repo/semantics/openAccess2024-06-18T15:02:39Zoai:repositorio.unesp.br:11449/185095Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:51:38.849150Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGES |
title |
PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGES |
spellingShingle |
PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGES Alcantara, Enner [UNESP] Sentinel-3 C2RCC inland water IOPs |
title_short |
PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGES |
title_full |
PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGES |
title_fullStr |
PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGES |
title_full_unstemmed |
PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGES |
title_sort |
PERFORMANCE ANALYSIS OF THE C2RCC PROCESSOR IN ESTIMATE THE WATER QUALITY PARAMETERS IN INLAND WATERS USING OLCl/SENTINEL-3A IMAGES |
author |
Alcantara, Enner [UNESP] |
author_facet |
Alcantara, Enner [UNESP] Andrade, Caroline Pilfer de [UNESP] Gomes, Ana Carolina [UNESP] Bernardo, Nariane [UNESP] Carmo, Alisson Fernando [UNESP] Rodrigues, Thanan Watanabe, Fernanda [UNESP] IEEE |
author_role |
author |
author2 |
Andrade, Caroline Pilfer de [UNESP] Gomes, Ana Carolina [UNESP] Bernardo, Nariane [UNESP] Carmo, Alisson Fernando [UNESP] Rodrigues, Thanan Watanabe, Fernanda [UNESP] IEEE |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Fed Inst Educ Sci & Technol Para |
dc.contributor.author.fl_str_mv |
Alcantara, Enner [UNESP] Andrade, Caroline Pilfer de [UNESP] Gomes, Ana Carolina [UNESP] Bernardo, Nariane [UNESP] Carmo, Alisson Fernando [UNESP] Rodrigues, Thanan Watanabe, Fernanda [UNESP] IEEE |
dc.subject.por.fl_str_mv |
Sentinel-3 C2RCC inland water IOPs |
topic |
Sentinel-3 C2RCC inland water IOPs |
description |
Remote sensing can be a powerful tool for long-teen spatial and temporal water quality monitoring if proper sets of algorithms are available. To estimate optically significant substances (OSS) by satellite images the water-leaving reflectance (pw) must be accurately estimated because it is directly related to the inherent optical properties (IOPs). For an accurate pw an effective atmospheric correction method must be used to remote the contribution of the atmospheric path radiance. The C2RCC processor has a set of algorithms capable of reduce the atmospheric path radiance, estimate the IOPs and then the OSS concentrations. But, the C2RCC was only tested using OL Cl/Sentine1-3 images for coastal areas, therefore, is of huge importance to know about their accuracy for inland waters. The results showed that the pw (with errors from 26.57 to 97.48%), IOPs (with errors from 39.77 to 99.90%) and OSS concentrations (with errors from 49.29 to 148.40%) estimated by C2RCC have no correlation with in situ data. For a long-teen use of OL Cl/Sentine1-3 images researchers must try to use another atmospheric correction and IOPs estimation methods when studying inland waters. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 2019-10-04T12:32:40Z 2019-10-04T12:32:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 9300-9303, 2018. 2153-6996 http://hdl.handle.net/11449/185095 WOS:000451039808214 6691310394410490 0000-0002-8077-2865 |
identifier_str_mv |
Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 9300-9303, 2018. 2153-6996 WOS:000451039808214 6691310394410490 0000-0002-8077-2865 |
url |
http://hdl.handle.net/11449/185095 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
9300-9303 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129130356539392 |