On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1

Detalhes bibliográficos
Autor(a) principal: Thuy, Nguyen Thi Bich [UNESP]
Data de Publicação: 2018
Outros Autores: Ruas, Maria Aparecida Soares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.4310/AJM.2018.v22.n6.a9
http://hdl.handle.net/11449/187414
Resumo: We construct singular varieties V G associated to a polynomial mapping G: ℂ n → ℂ n-1 where n ≥ 2. Let G: ℂ 3 → ℂ 2 be a local submersion, we prove that if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any variety V G is trivial then G is a fibration. In the case of a local submersion G: ℂ n ñ ℂ n-1 where n ≥ 4, the result is still true with an additional condition.
id UNSP_f32fab1a93837462e453a51635950410
oai_identifier_str oai:repositorio.unesp.br:11449/187414
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1Complex polynomial mappingsIntersection homologySingularities at infinityWe construct singular varieties V G associated to a polynomial mapping G: ℂ n → ℂ n-1 where n ≥ 2. Let G: ℂ 3 → ℂ 2 be a local submersion, we prove that if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any variety V G is trivial then G is a fibration. In the case of a local submersion G: ℂ n ñ ℂ n-1 where n ≥ 4, the result is still true with an additional condition.Ibilce-Unesp Universidade Estadual Paulista 'Júlio de Mesquita Filho' Instituto de Biociências Letras e Ciências Exatas, Rua Cristovão ColomboUniversidade de São Paulo Instituto de Ciências Matemáticas e de Computação - USP, Avenida Trabalhador São-Carlense, 400Ibilce-Unesp Universidade Estadual Paulista 'Júlio de Mesquita Filho' Instituto de Biociências Letras e Ciências Exatas, Rua Cristovão ColomboUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Thuy, Nguyen Thi Bich [UNESP]Ruas, Maria Aparecida Soares2019-10-06T15:35:28Z2019-10-06T15:35:28Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1157-1172http://dx.doi.org/10.4310/AJM.2018.v22.n6.a9Asian Journal of Mathematics, v. 22, n. 6, p. 1157-1172, 2018.1945-00361093-6106http://hdl.handle.net/11449/18741410.4310/AJM.2018.v22.n6.a92-s2.0-8506227919624719605805764950000-0002-2547-7716Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAsian Journal of Mathematicsinfo:eu-repo/semantics/openAccess2021-10-23T01:35:40Zoai:repositorio.unesp.br:11449/187414Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:27:40.558534Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1
title On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1
spellingShingle On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1
Thuy, Nguyen Thi Bich [UNESP]
Complex polynomial mappings
Intersection homology
Singularities at infinity
title_short On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1
title_full On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1
title_fullStr On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1
title_full_unstemmed On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1
title_sort On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1
author Thuy, Nguyen Thi Bich [UNESP]
author_facet Thuy, Nguyen Thi Bich [UNESP]
Ruas, Maria Aparecida Soares
author_role author
author2 Ruas, Maria Aparecida Soares
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Thuy, Nguyen Thi Bich [UNESP]
Ruas, Maria Aparecida Soares
dc.subject.por.fl_str_mv Complex polynomial mappings
Intersection homology
Singularities at infinity
topic Complex polynomial mappings
Intersection homology
Singularities at infinity
description We construct singular varieties V G associated to a polynomial mapping G: ℂ n → ℂ n-1 where n ≥ 2. Let G: ℂ 3 → ℂ 2 be a local submersion, we prove that if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any variety V G is trivial then G is a fibration. In the case of a local submersion G: ℂ n ñ ℂ n-1 where n ≥ 4, the result is still true with an additional condition.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
2019-10-06T15:35:28Z
2019-10-06T15:35:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.4310/AJM.2018.v22.n6.a9
Asian Journal of Mathematics, v. 22, n. 6, p. 1157-1172, 2018.
1945-0036
1093-6106
http://hdl.handle.net/11449/187414
10.4310/AJM.2018.v22.n6.a9
2-s2.0-85062279196
2471960580576495
0000-0002-2547-7716
url http://dx.doi.org/10.4310/AJM.2018.v22.n6.a9
http://hdl.handle.net/11449/187414
identifier_str_mv Asian Journal of Mathematics, v. 22, n. 6, p. 1157-1172, 2018.
1945-0036
1093-6106
10.4310/AJM.2018.v22.n6.a9
2-s2.0-85062279196
2471960580576495
0000-0002-2547-7716
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Asian Journal of Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1157-1172
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128656459956225