On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.4310/AJM.2018.v22.n6.a9 http://hdl.handle.net/11449/187414 |
Resumo: | We construct singular varieties V G associated to a polynomial mapping G: ℂ n → ℂ n-1 where n ≥ 2. Let G: ℂ 3 → ℂ 2 be a local submersion, we prove that if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any variety V G is trivial then G is a fibration. In the case of a local submersion G: ℂ n ñ ℂ n-1 where n ≥ 4, the result is still true with an additional condition. |
id |
UNSP_f32fab1a93837462e453a51635950410 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/187414 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1Complex polynomial mappingsIntersection homologySingularities at infinityWe construct singular varieties V G associated to a polynomial mapping G: ℂ n → ℂ n-1 where n ≥ 2. Let G: ℂ 3 → ℂ 2 be a local submersion, we prove that if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any variety V G is trivial then G is a fibration. In the case of a local submersion G: ℂ n ñ ℂ n-1 where n ≥ 4, the result is still true with an additional condition.Ibilce-Unesp Universidade Estadual Paulista 'Júlio de Mesquita Filho' Instituto de Biociências Letras e Ciências Exatas, Rua Cristovão ColomboUniversidade de São Paulo Instituto de Ciências Matemáticas e de Computação - USP, Avenida Trabalhador São-Carlense, 400Ibilce-Unesp Universidade Estadual Paulista 'Júlio de Mesquita Filho' Instituto de Biociências Letras e Ciências Exatas, Rua Cristovão ColomboUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Thuy, Nguyen Thi Bich [UNESP]Ruas, Maria Aparecida Soares2019-10-06T15:35:28Z2019-10-06T15:35:28Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1157-1172http://dx.doi.org/10.4310/AJM.2018.v22.n6.a9Asian Journal of Mathematics, v. 22, n. 6, p. 1157-1172, 2018.1945-00361093-6106http://hdl.handle.net/11449/18741410.4310/AJM.2018.v22.n6.a92-s2.0-8506227919624719605805764950000-0002-2547-7716Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAsian Journal of Mathematicsinfo:eu-repo/semantics/openAccess2021-10-23T01:35:40Zoai:repositorio.unesp.br:11449/187414Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:27:40.558534Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1 |
title |
On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1 |
spellingShingle |
On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1 Thuy, Nguyen Thi Bich [UNESP] Complex polynomial mappings Intersection homology Singularities at infinity |
title_short |
On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1 |
title_full |
On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1 |
title_fullStr |
On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1 |
title_full_unstemmed |
On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1 |
title_sort |
On singular varieties associated to a polynomial mapping from ℂ n to ℂ n-1 |
author |
Thuy, Nguyen Thi Bich [UNESP] |
author_facet |
Thuy, Nguyen Thi Bich [UNESP] Ruas, Maria Aparecida Soares |
author_role |
author |
author2 |
Ruas, Maria Aparecida Soares |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Thuy, Nguyen Thi Bich [UNESP] Ruas, Maria Aparecida Soares |
dc.subject.por.fl_str_mv |
Complex polynomial mappings Intersection homology Singularities at infinity |
topic |
Complex polynomial mappings Intersection homology Singularities at infinity |
description |
We construct singular varieties V G associated to a polynomial mapping G: ℂ n → ℂ n-1 where n ≥ 2. Let G: ℂ 3 → ℂ 2 be a local submersion, we prove that if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any variety V G is trivial then G is a fibration. In the case of a local submersion G: ℂ n ñ ℂ n-1 where n ≥ 4, the result is still true with an additional condition. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 2019-10-06T15:35:28Z 2019-10-06T15:35:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.4310/AJM.2018.v22.n6.a9 Asian Journal of Mathematics, v. 22, n. 6, p. 1157-1172, 2018. 1945-0036 1093-6106 http://hdl.handle.net/11449/187414 10.4310/AJM.2018.v22.n6.a9 2-s2.0-85062279196 2471960580576495 0000-0002-2547-7716 |
url |
http://dx.doi.org/10.4310/AJM.2018.v22.n6.a9 http://hdl.handle.net/11449/187414 |
identifier_str_mv |
Asian Journal of Mathematics, v. 22, n. 6, p. 1157-1172, 2018. 1945-0036 1093-6106 10.4310/AJM.2018.v22.n6.a9 2-s2.0-85062279196 2471960580576495 0000-0002-2547-7716 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Asian Journal of Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1157-1172 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128656459956225 |