NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS

Detalhes bibliográficos
Autor(a) principal: Cassol-Seewald, N. C. [UNESP]
Data de Publicação: 2012
Outros Autores: Farias, R. L. S., Krein, Gastão Inácio [UNESP], Marques de Carvalho, R. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1142/S0129183112400165
http://hdl.handle.net/11449/24152
Resumo: The time evolution of an order parameter towards equilibrium can be described by nonlinear Ginzburg-Landau (GL) type of equations, also known as time-dependent nonlinear Schrodinger equations. Environmental effects of random nature are usually taken into account by noise sources, turning the GL equations into stochastic equations. Noise sources give rise to lattice-spacing dependence of the solutions of the stochastic equations. We present a systematic method to renormalize the equations on a spatial lattice to obtain lattice-spacing independent solutions. We illustrate the method in approximation schemes designed to treat nonlinear and nonlocal GL equations that appear in real time thermal field theory and stochastic quantization.
id UNSP_f5d0a9f0497ffcc946f5afb2aa1f53b5
oai_identifier_str oai:repositorio.unesp.br:11449/24152
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONSDynamical phase transitionsstochastic quantizationThe time evolution of an order parameter towards equilibrium can be described by nonlinear Ginzburg-Landau (GL) type of equations, also known as time-dependent nonlinear Schrodinger equations. Environmental effects of random nature are usually taken into account by noise sources, turning the GL equations into stochastic equations. Noise sources give rise to lattice-spacing dependence of the solutions of the stochastic equations. We present a systematic method to renormalize the equations on a spatial lattice to obtain lattice-spacing independent solutions. We illustrate the method in approximation schemes designed to treat nonlinear and nonlocal GL equations that appear in real time thermal field theory and stochastic quantization.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, Inst Fis Teor, BR-01140070 São Paulo, BrazilUniv Fed Sao Joao Del Rei, Dept Ciencias Nat, BR-36301000 Sao Joao Del Rei, MG, BrazilUniv Fed São Paulo, Dept Informat Saude, Escola Paulista Med, BR-04023062 São Paulo, BrazilUniv Estadual Paulista, Inst Fis Teor, BR-01140070 São Paulo, BrazilWorld Scientific Publ Co Pte LtdUniversidade Estadual Paulista (Unesp)Universidade Federal de São João del-Rei (UFSJ)Universidade Federal de São Paulo (UNIFESP)Cassol-Seewald, N. C. [UNESP]Farias, R. L. S.Krein, Gastão Inácio [UNESP]Marques de Carvalho, R. S.2013-09-30T18:53:23Z2014-05-20T14:09:22Z2013-09-30T18:53:23Z2014-05-20T14:09:22Z2012-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9http://dx.doi.org/10.1142/S0129183112400165International Journal of Modern Physics C. Singapore: World Scientific Publ Co Pte Ltd, v. 23, n. 8, p. 9, 2012.0129-1831http://hdl.handle.net/11449/2415210.1142/S0129183112400165WOS:0003078492000175704289678296630Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Modern Physics C0.9190,316info:eu-repo/semantics/openAccess2021-10-23T11:33:29Zoai:repositorio.unesp.br:11449/24152Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:07:25.120533Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS
title NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS
spellingShingle NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS
Cassol-Seewald, N. C. [UNESP]
Dynamical phase transitions
stochastic quantization
title_short NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS
title_full NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS
title_fullStr NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS
title_full_unstemmed NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS
title_sort NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS
author Cassol-Seewald, N. C. [UNESP]
author_facet Cassol-Seewald, N. C. [UNESP]
Farias, R. L. S.
Krein, Gastão Inácio [UNESP]
Marques de Carvalho, R. S.
author_role author
author2 Farias, R. L. S.
Krein, Gastão Inácio [UNESP]
Marques de Carvalho, R. S.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São João del-Rei (UFSJ)
Universidade Federal de São Paulo (UNIFESP)
dc.contributor.author.fl_str_mv Cassol-Seewald, N. C. [UNESP]
Farias, R. L. S.
Krein, Gastão Inácio [UNESP]
Marques de Carvalho, R. S.
dc.subject.por.fl_str_mv Dynamical phase transitions
stochastic quantization
topic Dynamical phase transitions
stochastic quantization
description The time evolution of an order parameter towards equilibrium can be described by nonlinear Ginzburg-Landau (GL) type of equations, also known as time-dependent nonlinear Schrodinger equations. Environmental effects of random nature are usually taken into account by noise sources, turning the GL equations into stochastic equations. Noise sources give rise to lattice-spacing dependence of the solutions of the stochastic equations. We present a systematic method to renormalize the equations on a spatial lattice to obtain lattice-spacing independent solutions. We illustrate the method in approximation schemes designed to treat nonlinear and nonlocal GL equations that appear in real time thermal field theory and stochastic quantization.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-01
2013-09-30T18:53:23Z
2013-09-30T18:53:23Z
2014-05-20T14:09:22Z
2014-05-20T14:09:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1142/S0129183112400165
International Journal of Modern Physics C. Singapore: World Scientific Publ Co Pte Ltd, v. 23, n. 8, p. 9, 2012.
0129-1831
http://hdl.handle.net/11449/24152
10.1142/S0129183112400165
WOS:000307849200017
5704289678296630
url http://dx.doi.org/10.1142/S0129183112400165
http://hdl.handle.net/11449/24152
identifier_str_mv International Journal of Modern Physics C. Singapore: World Scientific Publ Co Pte Ltd, v. 23, n. 8, p. 9, 2012.
0129-1831
10.1142/S0129183112400165
WOS:000307849200017
5704289678296630
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Modern Physics C
0.919
0,316
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 9
dc.publisher.none.fl_str_mv World Scientific Publ Co Pte Ltd
publisher.none.fl_str_mv World Scientific Publ Co Pte Ltd
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129586335055872