Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning

Detalhes bibliográficos
Autor(a) principal: Mueller, Tom
Data de Publicação: 2015
Outros Autores: Zourarakis, Demetrio, Sassenrath, Gretchen F., Mijatovic, Blazan, Dillon, Carl R., Gianello, Eduardo M., Barbieri, Rafael Mazza, Rodrigues, Marcos, Rienzi, Eduardo A., Faleiros, Gabriel D. [UNESP]
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1201/b18173-8
http://hdl.handle.net/11449/245841
Resumo: Powerful computers and geographic information systems (GISs) allow analysts to more effectively utilize digital data resources such as soil survey maps, remotely sensed imagery, and terrain data for conservation planning. The objectives of this chapter are to (1) demonstrate analyses of digital data for conservation assessment and (2) provide an assignment and detailed instructions for readers to analyze publically available geospatial data using GIS and automated modeling techniques. Research studies demonstrate that (1) eroded concentrated water flow pathways in agricultural fields requiring grassed waterways can be identified with early-spring high-resolution (i.e., 0.3-m) imagery and light detection and ranging (LiDAR)-derived terrain maps (i.e., hillshade and terrain attribute maps); (2) vegetation indices calculated from the National Agricultural Imagery Program (NAIP) imagery are effective tools for detecting poorly vegetated grassed waterways requiring replanting; and (3) terrain and economic modeling techniques can be used for slope and yield map analysis for determining the profitability of cropping steeper slopes. Four appendices are provided with step-by-step instructions for (1) obtaining publically available USDA NAIP imagery and US Geological Service (USGS) digital elevation models (DEMs); (2) calculating vegetation indices with USDA NAIP imagery; (3) creating terrain attribute, contour, and hillshade maps from USGS DEM data; and (4) conducting elevation models from public point cloud LiDAR elevation data.
id UNSP_f8456373e8b07c78efca0b29b5e00469
oai_identifier_str oai:repositorio.unesp.br:11449/245841
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation PlanningPowerful computers and geographic information systems (GISs) allow analysts to more effectively utilize digital data resources such as soil survey maps, remotely sensed imagery, and terrain data for conservation planning. The objectives of this chapter are to (1) demonstrate analyses of digital data for conservation assessment and (2) provide an assignment and detailed instructions for readers to analyze publically available geospatial data using GIS and automated modeling techniques. Research studies demonstrate that (1) eroded concentrated water flow pathways in agricultural fields requiring grassed waterways can be identified with early-spring high-resolution (i.e., 0.3-m) imagery and light detection and ranging (LiDAR)-derived terrain maps (i.e., hillshade and terrain attribute maps); (2) vegetation indices calculated from the National Agricultural Imagery Program (NAIP) imagery are effective tools for detecting poorly vegetated grassed waterways requiring replanting; and (3) terrain and economic modeling techniques can be used for slope and yield map analysis for determining the profitability of cropping steeper slopes. Four appendices are provided with step-by-step instructions for (1) obtaining publically available USDA NAIP imagery and US Geological Service (USGS) digital elevation models (DEMs); (2) calculating vegetation indices with USDA NAIP imagery; (3) creating terrain attribute, contour, and hillshade maps from USGS DEM data; and (4) conducting elevation models from public point cloud LiDAR elevation data.Decision Science and Modeling team Intelligent Solutions Group John Deere and CompanyPrecision Agriculture community American Society of AgronomyDivision of Geographic InformationKansas State University Southeast Agricultural Research CenterDepartment of Plant and Soil Sciences University of KentuckyDepartment of Agricultural Economics University of KentuckyField Production Monsanto CompanyAthenas Agricultural Consulting and Laboratory Cidade JardimCampus Ciências Agrárias Universidade Federal do Vale do São FranciscoSão Paulo State UniversitySão Paulo State UniversityJohn Deere and CompanyAmerican Society of AgronomyDivision of Geographic InformationSoutheast Agricultural Research CenterUniversity of KentuckyMonsanto CompanyCidade JardimUniversidade Federal do Vale do São FranciscoUniversidade Estadual Paulista (UNESP)Mueller, TomZourarakis, DemetrioSassenrath, Gretchen F.Mijatovic, BlazanDillon, Carl R.Gianello, Eduardo M.Barbieri, Rafael MazzaRodrigues, MarcosRienzi, Eduardo A.Faleiros, Gabriel D. [UNESP]2023-07-29T12:24:42Z2023-07-29T12:24:42Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart11-36http://dx.doi.org/10.1201/b18173-8Gis Applications in Agriculture: Volume Four • Conservation Planning, v. 4, p. 11-36.http://hdl.handle.net/11449/24584110.1201/b18173-82-s2.0-85034846203Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGis Applications in Agriculture: Volume Four • Conservation Planninginfo:eu-repo/semantics/openAccess2023-07-29T12:24:42Zoai:repositorio.unesp.br:11449/245841Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:14:44.073667Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning
title Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning
spellingShingle Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning
Mueller, Tom
title_short Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning
title_full Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning
title_fullStr Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning
title_full_unstemmed Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning
title_sort Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning
author Mueller, Tom
author_facet Mueller, Tom
Zourarakis, Demetrio
Sassenrath, Gretchen F.
Mijatovic, Blazan
Dillon, Carl R.
Gianello, Eduardo M.
Barbieri, Rafael Mazza
Rodrigues, Marcos
Rienzi, Eduardo A.
Faleiros, Gabriel D. [UNESP]
author_role author
author2 Zourarakis, Demetrio
Sassenrath, Gretchen F.
Mijatovic, Blazan
Dillon, Carl R.
Gianello, Eduardo M.
Barbieri, Rafael Mazza
Rodrigues, Marcos
Rienzi, Eduardo A.
Faleiros, Gabriel D. [UNESP]
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv John Deere and Company
American Society of Agronomy
Division of Geographic Information
Southeast Agricultural Research Center
University of Kentucky
Monsanto Company
Cidade Jardim
Universidade Federal do Vale do São Francisco
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Mueller, Tom
Zourarakis, Demetrio
Sassenrath, Gretchen F.
Mijatovic, Blazan
Dillon, Carl R.
Gianello, Eduardo M.
Barbieri, Rafael Mazza
Rodrigues, Marcos
Rienzi, Eduardo A.
Faleiros, Gabriel D. [UNESP]
description Powerful computers and geographic information systems (GISs) allow analysts to more effectively utilize digital data resources such as soil survey maps, remotely sensed imagery, and terrain data for conservation planning. The objectives of this chapter are to (1) demonstrate analyses of digital data for conservation assessment and (2) provide an assignment and detailed instructions for readers to analyze publically available geospatial data using GIS and automated modeling techniques. Research studies demonstrate that (1) eroded concentrated water flow pathways in agricultural fields requiring grassed waterways can be identified with early-spring high-resolution (i.e., 0.3-m) imagery and light detection and ranging (LiDAR)-derived terrain maps (i.e., hillshade and terrain attribute maps); (2) vegetation indices calculated from the National Agricultural Imagery Program (NAIP) imagery are effective tools for detecting poorly vegetated grassed waterways requiring replanting; and (3) terrain and economic modeling techniques can be used for slope and yield map analysis for determining the profitability of cropping steeper slopes. Four appendices are provided with step-by-step instructions for (1) obtaining publically available USDA NAIP imagery and US Geological Service (USGS) digital elevation models (DEMs); (2) calculating vegetation indices with USDA NAIP imagery; (3) creating terrain attribute, contour, and hillshade maps from USGS DEM data; and (4) conducting elevation models from public point cloud LiDAR elevation data.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01
2023-07-29T12:24:42Z
2023-07-29T12:24:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1201/b18173-8
Gis Applications in Agriculture: Volume Four • Conservation Planning, v. 4, p. 11-36.
http://hdl.handle.net/11449/245841
10.1201/b18173-8
2-s2.0-85034846203
url http://dx.doi.org/10.1201/b18173-8
http://hdl.handle.net/11449/245841
identifier_str_mv Gis Applications in Agriculture: Volume Four • Conservation Planning, v. 4, p. 11-36.
10.1201/b18173-8
2-s2.0-85034846203
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Gis Applications in Agriculture: Volume Four • Conservation Planning
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 11-36
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128778637934592