Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1201/b18173-8 http://hdl.handle.net/11449/245841 |
Resumo: | Powerful computers and geographic information systems (GISs) allow analysts to more effectively utilize digital data resources such as soil survey maps, remotely sensed imagery, and terrain data for conservation planning. The objectives of this chapter are to (1) demonstrate analyses of digital data for conservation assessment and (2) provide an assignment and detailed instructions for readers to analyze publically available geospatial data using GIS and automated modeling techniques. Research studies demonstrate that (1) eroded concentrated water flow pathways in agricultural fields requiring grassed waterways can be identified with early-spring high-resolution (i.e., 0.3-m) imagery and light detection and ranging (LiDAR)-derived terrain maps (i.e., hillshade and terrain attribute maps); (2) vegetation indices calculated from the National Agricultural Imagery Program (NAIP) imagery are effective tools for detecting poorly vegetated grassed waterways requiring replanting; and (3) terrain and economic modeling techniques can be used for slope and yield map analysis for determining the profitability of cropping steeper slopes. Four appendices are provided with step-by-step instructions for (1) obtaining publically available USDA NAIP imagery and US Geological Service (USGS) digital elevation models (DEMs); (2) calculating vegetation indices with USDA NAIP imagery; (3) creating terrain attribute, contour, and hillshade maps from USGS DEM data; and (4) conducting elevation models from public point cloud LiDAR elevation data. |
id |
UNSP_f8456373e8b07c78efca0b29b5e00469 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/245841 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation PlanningPowerful computers and geographic information systems (GISs) allow analysts to more effectively utilize digital data resources such as soil survey maps, remotely sensed imagery, and terrain data for conservation planning. The objectives of this chapter are to (1) demonstrate analyses of digital data for conservation assessment and (2) provide an assignment and detailed instructions for readers to analyze publically available geospatial data using GIS and automated modeling techniques. Research studies demonstrate that (1) eroded concentrated water flow pathways in agricultural fields requiring grassed waterways can be identified with early-spring high-resolution (i.e., 0.3-m) imagery and light detection and ranging (LiDAR)-derived terrain maps (i.e., hillshade and terrain attribute maps); (2) vegetation indices calculated from the National Agricultural Imagery Program (NAIP) imagery are effective tools for detecting poorly vegetated grassed waterways requiring replanting; and (3) terrain and economic modeling techniques can be used for slope and yield map analysis for determining the profitability of cropping steeper slopes. Four appendices are provided with step-by-step instructions for (1) obtaining publically available USDA NAIP imagery and US Geological Service (USGS) digital elevation models (DEMs); (2) calculating vegetation indices with USDA NAIP imagery; (3) creating terrain attribute, contour, and hillshade maps from USGS DEM data; and (4) conducting elevation models from public point cloud LiDAR elevation data.Decision Science and Modeling team Intelligent Solutions Group John Deere and CompanyPrecision Agriculture community American Society of AgronomyDivision of Geographic InformationKansas State University Southeast Agricultural Research CenterDepartment of Plant and Soil Sciences University of KentuckyDepartment of Agricultural Economics University of KentuckyField Production Monsanto CompanyAthenas Agricultural Consulting and Laboratory Cidade JardimCampus Ciências Agrárias Universidade Federal do Vale do São FranciscoSão Paulo State UniversitySão Paulo State UniversityJohn Deere and CompanyAmerican Society of AgronomyDivision of Geographic InformationSoutheast Agricultural Research CenterUniversity of KentuckyMonsanto CompanyCidade JardimUniversidade Federal do Vale do São FranciscoUniversidade Estadual Paulista (UNESP)Mueller, TomZourarakis, DemetrioSassenrath, Gretchen F.Mijatovic, BlazanDillon, Carl R.Gianello, Eduardo M.Barbieri, Rafael MazzaRodrigues, MarcosRienzi, Eduardo A.Faleiros, Gabriel D. [UNESP]2023-07-29T12:24:42Z2023-07-29T12:24:42Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart11-36http://dx.doi.org/10.1201/b18173-8Gis Applications in Agriculture: Volume Four • Conservation Planning, v. 4, p. 11-36.http://hdl.handle.net/11449/24584110.1201/b18173-82-s2.0-85034846203Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGis Applications in Agriculture: Volume Four • Conservation Planninginfo:eu-repo/semantics/openAccess2023-07-29T12:24:42Zoai:repositorio.unesp.br:11449/245841Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:14:44.073667Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning |
title |
Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning |
spellingShingle |
Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning Mueller, Tom |
title_short |
Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning |
title_full |
Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning |
title_fullStr |
Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning |
title_full_unstemmed |
Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning |
title_sort |
Soil Surveys, Vegetation Indices, and Topographic Analysis for Conservation Planning |
author |
Mueller, Tom |
author_facet |
Mueller, Tom Zourarakis, Demetrio Sassenrath, Gretchen F. Mijatovic, Blazan Dillon, Carl R. Gianello, Eduardo M. Barbieri, Rafael Mazza Rodrigues, Marcos Rienzi, Eduardo A. Faleiros, Gabriel D. [UNESP] |
author_role |
author |
author2 |
Zourarakis, Demetrio Sassenrath, Gretchen F. Mijatovic, Blazan Dillon, Carl R. Gianello, Eduardo M. Barbieri, Rafael Mazza Rodrigues, Marcos Rienzi, Eduardo A. Faleiros, Gabriel D. [UNESP] |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
John Deere and Company American Society of Agronomy Division of Geographic Information Southeast Agricultural Research Center University of Kentucky Monsanto Company Cidade Jardim Universidade Federal do Vale do São Francisco Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Mueller, Tom Zourarakis, Demetrio Sassenrath, Gretchen F. Mijatovic, Blazan Dillon, Carl R. Gianello, Eduardo M. Barbieri, Rafael Mazza Rodrigues, Marcos Rienzi, Eduardo A. Faleiros, Gabriel D. [UNESP] |
description |
Powerful computers and geographic information systems (GISs) allow analysts to more effectively utilize digital data resources such as soil survey maps, remotely sensed imagery, and terrain data for conservation planning. The objectives of this chapter are to (1) demonstrate analyses of digital data for conservation assessment and (2) provide an assignment and detailed instructions for readers to analyze publically available geospatial data using GIS and automated modeling techniques. Research studies demonstrate that (1) eroded concentrated water flow pathways in agricultural fields requiring grassed waterways can be identified with early-spring high-resolution (i.e., 0.3-m) imagery and light detection and ranging (LiDAR)-derived terrain maps (i.e., hillshade and terrain attribute maps); (2) vegetation indices calculated from the National Agricultural Imagery Program (NAIP) imagery are effective tools for detecting poorly vegetated grassed waterways requiring replanting; and (3) terrain and economic modeling techniques can be used for slope and yield map analysis for determining the profitability of cropping steeper slopes. Four appendices are provided with step-by-step instructions for (1) obtaining publically available USDA NAIP imagery and US Geological Service (USGS) digital elevation models (DEMs); (2) calculating vegetation indices with USDA NAIP imagery; (3) creating terrain attribute, contour, and hillshade maps from USGS DEM data; and (4) conducting elevation models from public point cloud LiDAR elevation data. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2023-07-29T12:24:42Z 2023-07-29T12:24:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1201/b18173-8 Gis Applications in Agriculture: Volume Four • Conservation Planning, v. 4, p. 11-36. http://hdl.handle.net/11449/245841 10.1201/b18173-8 2-s2.0-85034846203 |
url |
http://dx.doi.org/10.1201/b18173-8 http://hdl.handle.net/11449/245841 |
identifier_str_mv |
Gis Applications in Agriculture: Volume Four • Conservation Planning, v. 4, p. 11-36. 10.1201/b18173-8 2-s2.0-85034846203 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Gis Applications in Agriculture: Volume Four • Conservation Planning |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11-36 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128778637934592 |