Hamiltonian analysis and positivity of a new massive spin-2 model

Detalhes bibliográficos
Autor(a) principal: Dos Santos, Alessandro L. R.
Data de Publicação: 2022
Outros Autores: Dalmazi, Denis [UNESP], De Paula, Wayne
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/1361-6382/ac4380
http://hdl.handle.net/11449/234085
Resumo: Recently a new model has been proposed to describe free massive spin-2 particles in D dimensions in terms of a non symmetric rank-2 tensor e μν and a mixed symmetry tensor B μ[αβ]. The model is invariant under linearized diffeomorphisms without Stueckelberg fields. It resembles a spin-2 version of the topologically massive spin-1 BF model (Cremmer-Scherk model). Here we apply the Dirac-Bergmann procedure in order to identify all Hamiltonian constraints and perform a complete counting of degrees of freedom. In D = 3 + 1 we find 5 degrees of freedom corresponding to helicities ±2, ±1, 0 as expected. The positivity of the reduced Hamiltonian is proved by using spin projection operators. We have also proposed a parent action that establishes the duality between the Fierz-Pauli and the new model. The equivalence between gauge invariant correlation functions of both theories is demonstrated.
id UNSP_f87b8dd35d4c3244fdee67835b399f72
oai_identifier_str oai:repositorio.unesp.br:11449/234085
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Hamiltonian analysis and positivity of a new massive spin-2 modelCremmer Scherk modelHamiltonian constraintsmassive gravityspin 2topologically massiveRecently a new model has been proposed to describe free massive spin-2 particles in D dimensions in terms of a non symmetric rank-2 tensor e μν and a mixed symmetry tensor B μ[αβ]. The model is invariant under linearized diffeomorphisms without Stueckelberg fields. It resembles a spin-2 version of the topologically massive spin-1 BF model (Cremmer-Scherk model). Here we apply the Dirac-Bergmann procedure in order to identify all Hamiltonian constraints and perform a complete counting of degrees of freedom. In D = 3 + 1 we find 5 degrees of freedom corresponding to helicities ±2, ±1, 0 as expected. The positivity of the reduced Hamiltonian is proved by using spin projection operators. We have also proposed a parent action that establishes the duality between the Fierz-Pauli and the new model. The equivalence between gauge invariant correlation functions of both theories is demonstrated.Instituto Tecnológico de Aeronáutica DCTA, CEP 12228-900, SPUNESP-Campus de Guaratinguetá DF, CEP 12516-410, SPUNESP-Campus de Guaratinguetá DF, CEP 12516-410, SPDCTAUniversidade Estadual Paulista (UNESP)Dos Santos, Alessandro L. R.Dalmazi, Denis [UNESP]De Paula, Wayne2022-05-01T13:11:39Z2022-05-01T13:11:39Z2022-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1361-6382/ac4380Classical and Quantum Gravity, v. 39, n. 3, 2022.1361-63820264-9381http://hdl.handle.net/11449/23408510.1088/1361-6382/ac43802-s2.0-85123897523Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengClassical and Quantum Gravityinfo:eu-repo/semantics/openAccess2024-07-01T20:52:26Zoai:repositorio.unesp.br:11449/234085Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:17:23.330416Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Hamiltonian analysis and positivity of a new massive spin-2 model
title Hamiltonian analysis and positivity of a new massive spin-2 model
spellingShingle Hamiltonian analysis and positivity of a new massive spin-2 model
Dos Santos, Alessandro L. R.
Cremmer Scherk model
Hamiltonian constraints
massive gravity
spin 2
topologically massive
title_short Hamiltonian analysis and positivity of a new massive spin-2 model
title_full Hamiltonian analysis and positivity of a new massive spin-2 model
title_fullStr Hamiltonian analysis and positivity of a new massive spin-2 model
title_full_unstemmed Hamiltonian analysis and positivity of a new massive spin-2 model
title_sort Hamiltonian analysis and positivity of a new massive spin-2 model
author Dos Santos, Alessandro L. R.
author_facet Dos Santos, Alessandro L. R.
Dalmazi, Denis [UNESP]
De Paula, Wayne
author_role author
author2 Dalmazi, Denis [UNESP]
De Paula, Wayne
author2_role author
author
dc.contributor.none.fl_str_mv DCTA
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Dos Santos, Alessandro L. R.
Dalmazi, Denis [UNESP]
De Paula, Wayne
dc.subject.por.fl_str_mv Cremmer Scherk model
Hamiltonian constraints
massive gravity
spin 2
topologically massive
topic Cremmer Scherk model
Hamiltonian constraints
massive gravity
spin 2
topologically massive
description Recently a new model has been proposed to describe free massive spin-2 particles in D dimensions in terms of a non symmetric rank-2 tensor e μν and a mixed symmetry tensor B μ[αβ]. The model is invariant under linearized diffeomorphisms without Stueckelberg fields. It resembles a spin-2 version of the topologically massive spin-1 BF model (Cremmer-Scherk model). Here we apply the Dirac-Bergmann procedure in order to identify all Hamiltonian constraints and perform a complete counting of degrees of freedom. In D = 3 + 1 we find 5 degrees of freedom corresponding to helicities ±2, ±1, 0 as expected. The positivity of the reduced Hamiltonian is proved by using spin projection operators. We have also proposed a parent action that establishes the duality between the Fierz-Pauli and the new model. The equivalence between gauge invariant correlation functions of both theories is demonstrated.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-01T13:11:39Z
2022-05-01T13:11:39Z
2022-02-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1361-6382/ac4380
Classical and Quantum Gravity, v. 39, n. 3, 2022.
1361-6382
0264-9381
http://hdl.handle.net/11449/234085
10.1088/1361-6382/ac4380
2-s2.0-85123897523
url http://dx.doi.org/10.1088/1361-6382/ac4380
http://hdl.handle.net/11449/234085
identifier_str_mv Classical and Quantum Gravity, v. 39, n. 3, 2022.
1361-6382
0264-9381
10.1088/1361-6382/ac4380
2-s2.0-85123897523
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Classical and Quantum Gravity
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129047297785856