Hamiltonian analysis and positivity of a new massive spin-2 model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1088/1361-6382/ac4380 http://hdl.handle.net/11449/234085 |
Resumo: | Recently a new model has been proposed to describe free massive spin-2 particles in D dimensions in terms of a non symmetric rank-2 tensor e μν and a mixed symmetry tensor B μ[αβ]. The model is invariant under linearized diffeomorphisms without Stueckelberg fields. It resembles a spin-2 version of the topologically massive spin-1 BF model (Cremmer-Scherk model). Here we apply the Dirac-Bergmann procedure in order to identify all Hamiltonian constraints and perform a complete counting of degrees of freedom. In D = 3 + 1 we find 5 degrees of freedom corresponding to helicities ±2, ±1, 0 as expected. The positivity of the reduced Hamiltonian is proved by using spin projection operators. We have also proposed a parent action that establishes the duality between the Fierz-Pauli and the new model. The equivalence between gauge invariant correlation functions of both theories is demonstrated. |
id |
UNSP_f87b8dd35d4c3244fdee67835b399f72 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/234085 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Hamiltonian analysis and positivity of a new massive spin-2 modelCremmer Scherk modelHamiltonian constraintsmassive gravityspin 2topologically massiveRecently a new model has been proposed to describe free massive spin-2 particles in D dimensions in terms of a non symmetric rank-2 tensor e μν and a mixed symmetry tensor B μ[αβ]. The model is invariant under linearized diffeomorphisms without Stueckelberg fields. It resembles a spin-2 version of the topologically massive spin-1 BF model (Cremmer-Scherk model). Here we apply the Dirac-Bergmann procedure in order to identify all Hamiltonian constraints and perform a complete counting of degrees of freedom. In D = 3 + 1 we find 5 degrees of freedom corresponding to helicities ±2, ±1, 0 as expected. The positivity of the reduced Hamiltonian is proved by using spin projection operators. We have also proposed a parent action that establishes the duality between the Fierz-Pauli and the new model. The equivalence between gauge invariant correlation functions of both theories is demonstrated.Instituto Tecnológico de Aeronáutica DCTA, CEP 12228-900, SPUNESP-Campus de Guaratinguetá DF, CEP 12516-410, SPUNESP-Campus de Guaratinguetá DF, CEP 12516-410, SPDCTAUniversidade Estadual Paulista (UNESP)Dos Santos, Alessandro L. R.Dalmazi, Denis [UNESP]De Paula, Wayne2022-05-01T13:11:39Z2022-05-01T13:11:39Z2022-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1361-6382/ac4380Classical and Quantum Gravity, v. 39, n. 3, 2022.1361-63820264-9381http://hdl.handle.net/11449/23408510.1088/1361-6382/ac43802-s2.0-85123897523Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengClassical and Quantum Gravityinfo:eu-repo/semantics/openAccess2024-07-01T20:52:26Zoai:repositorio.unesp.br:11449/234085Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:17:23.330416Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Hamiltonian analysis and positivity of a new massive spin-2 model |
title |
Hamiltonian analysis and positivity of a new massive spin-2 model |
spellingShingle |
Hamiltonian analysis and positivity of a new massive spin-2 model Dos Santos, Alessandro L. R. Cremmer Scherk model Hamiltonian constraints massive gravity spin 2 topologically massive |
title_short |
Hamiltonian analysis and positivity of a new massive spin-2 model |
title_full |
Hamiltonian analysis and positivity of a new massive spin-2 model |
title_fullStr |
Hamiltonian analysis and positivity of a new massive spin-2 model |
title_full_unstemmed |
Hamiltonian analysis and positivity of a new massive spin-2 model |
title_sort |
Hamiltonian analysis and positivity of a new massive spin-2 model |
author |
Dos Santos, Alessandro L. R. |
author_facet |
Dos Santos, Alessandro L. R. Dalmazi, Denis [UNESP] De Paula, Wayne |
author_role |
author |
author2 |
Dalmazi, Denis [UNESP] De Paula, Wayne |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
DCTA Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Dos Santos, Alessandro L. R. Dalmazi, Denis [UNESP] De Paula, Wayne |
dc.subject.por.fl_str_mv |
Cremmer Scherk model Hamiltonian constraints massive gravity spin 2 topologically massive |
topic |
Cremmer Scherk model Hamiltonian constraints massive gravity spin 2 topologically massive |
description |
Recently a new model has been proposed to describe free massive spin-2 particles in D dimensions in terms of a non symmetric rank-2 tensor e μν and a mixed symmetry tensor B μ[αβ]. The model is invariant under linearized diffeomorphisms without Stueckelberg fields. It resembles a spin-2 version of the topologically massive spin-1 BF model (Cremmer-Scherk model). Here we apply the Dirac-Bergmann procedure in order to identify all Hamiltonian constraints and perform a complete counting of degrees of freedom. In D = 3 + 1 we find 5 degrees of freedom corresponding to helicities ±2, ±1, 0 as expected. The positivity of the reduced Hamiltonian is proved by using spin projection operators. We have also proposed a parent action that establishes the duality between the Fierz-Pauli and the new model. The equivalence between gauge invariant correlation functions of both theories is demonstrated. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-01T13:11:39Z 2022-05-01T13:11:39Z 2022-02-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/1361-6382/ac4380 Classical and Quantum Gravity, v. 39, n. 3, 2022. 1361-6382 0264-9381 http://hdl.handle.net/11449/234085 10.1088/1361-6382/ac4380 2-s2.0-85123897523 |
url |
http://dx.doi.org/10.1088/1361-6382/ac4380 http://hdl.handle.net/11449/234085 |
identifier_str_mv |
Classical and Quantum Gravity, v. 39, n. 3, 2022. 1361-6382 0264-9381 10.1088/1361-6382/ac4380 2-s2.0-85123897523 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Classical and Quantum Gravity |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129047297785856 |