Machine learning framework for optimization of flocculation process of water treatment

Detalhes bibliográficos
Autor(a) principal: Bankole, Abayomi Oluwatobiloba
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/244140
Resumo: The implementation of machine learning (ML) model that could improve both the effectiveness and sustainability of water treatment system is a major problem in the water sector, with the optimization of flocculation process being a major setback. In this study, we have developed the first ML model for floc length evolution monitoring and a framework for its potential adoption in large-scale water treatment. Artificial Neural Network (ANN) and Long-Short Term Memory (LSTM) models, and traditional time series model; Auto Regressive Integrated Moving Average (ARIMA) were explored to predict floc length evolution data that was obtained through non-intrusive image analysis from a jar test batch assay and model the orthokinetic process. Batch assay data of two velocity gradient (Gf 20 sec-1 and 60 sec-1) and flocculation time of 3hrs were partitioned into 5 bins for floc length range 0.27 – 3.5 mm and upscaled using linear method. Results showed that ARIMA model is not suitable for predicting number of flocs with a negative test accuracy (R2). ANN recorded R2 of 0.86 – 1.0 for training and 0.84 – 0.99 for testing, across Gf 20 sec-1 and Gf 60 sec-1. LSTM model has the best prediction accuracy of 98 – 100% for Gf 20 sec-1 and perfect prediction of number of flocs across all bins and Gfs. Our study has proven that the developed framework can be replicated in large scale water treatment and will promote application of smart technology in large-scale water/wastewater treatment.
id UNSP_f9ab8801b9594c1d19dc7294df4a2811
oai_identifier_str oai:repositorio.unesp.br:11449/244140
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Machine learning framework for optimization of flocculation process of water treatmentFramework de aprendizado de máquina para otimização do processo de floculação de tratamento de águaFloc length evolutionFlocculationMachine learningNeural networkSmart water treatmentEvolução do comprimento dos flocosFloculaçãoAprendizado de máquinaRede neuralTratamento inteligente de águaThe implementation of machine learning (ML) model that could improve both the effectiveness and sustainability of water treatment system is a major problem in the water sector, with the optimization of flocculation process being a major setback. In this study, we have developed the first ML model for floc length evolution monitoring and a framework for its potential adoption in large-scale water treatment. Artificial Neural Network (ANN) and Long-Short Term Memory (LSTM) models, and traditional time series model; Auto Regressive Integrated Moving Average (ARIMA) were explored to predict floc length evolution data that was obtained through non-intrusive image analysis from a jar test batch assay and model the orthokinetic process. Batch assay data of two velocity gradient (Gf 20 sec-1 and 60 sec-1) and flocculation time of 3hrs were partitioned into 5 bins for floc length range 0.27 – 3.5 mm and upscaled using linear method. Results showed that ARIMA model is not suitable for predicting number of flocs with a negative test accuracy (R2). ANN recorded R2 of 0.86 – 1.0 for training and 0.84 – 0.99 for testing, across Gf 20 sec-1 and Gf 60 sec-1. LSTM model has the best prediction accuracy of 98 – 100% for Gf 20 sec-1 and perfect prediction of number of flocs across all bins and Gfs. Our study has proven that the developed framework can be replicated in large scale water treatment and will promote application of smart technology in large-scale water/wastewater treatment.A implementação do modelo de aprendizado de máquina (ML) que poderia melhorar tanto a eficácia como a sustentabilidade do sistema de tratamento de água é um grande problema no setor de água, com a otimização do processo de floculação sendo um grande obstáculo. Neste estudo, desenvolvemos o primeiro modelo ML para monitoramento da evolução do comprimento dos flocos e uma estrutura para sua potencial adoção em tratamento de água em larga escala. Modelos de Rede Neural Artificial (ANN) e Memória de Curto e Longo Prazo (LSTM), juntamente com o modelo tradicional de séries temporais: Média Móvel Integrada Regressiva Automática (ARIMA), foram explorados para prever os dados de evolução do comprimento dos flocos obtidos por análise de imagem não intrusiva de um ensaio de teste em lote e modelar o processo otocinético. Os dados do ensaio em lote, com dois gradientes de velocidade (Gf 20 seg-1 e 60 seg-1 ) e tempo de floculação de 3 horas, foram divididos em 5 intervalos para faixas de comprimento de floco de 0,27 a 3,5 mm e otmizados usando o método linear. Os resultados mostraram que o modelo ARIMA não é adequado para prever o número de flocos, com uma acurácia de teste negativa (R2 ). A ANN registrou R2 de 0,86 – 1,0 para treinamento e 0,84 – 0,99 para teste, em Gf 20 seg-1 e Gf 60 seg-1 . O modelo LSTM tem a melhor precisão de previsão de 98 – 100% para Gf 20 seg -1 e previsão perfeita do número de flocos em todas os intervalos e Gfs. Nosso estudo comprovou que a estrutura desenvolvida pode ser replicada em tratamento de água em larga escala e promoverá a aplicação de tecnologia inteligente em tratamento de água/esgoto em larga escalaOutraUniversidade Estadual Paulista (Unesp)Moruzzi, Rodrigo Braga [UNESP]Universidade Estadual Paulista (Unesp)Bankole, Abayomi Oluwatobiloba2023-06-20T17:33:14Z2023-06-20T17:33:14Z2023-06-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/24414033004056089P5enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-28T18:58:13Zoai:repositorio.unesp.br:11449/244140Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:41:50.382363Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Machine learning framework for optimization of flocculation process of water treatment
Framework de aprendizado de máquina para otimização do processo de floculação de tratamento de água
title Machine learning framework for optimization of flocculation process of water treatment
spellingShingle Machine learning framework for optimization of flocculation process of water treatment
Bankole, Abayomi Oluwatobiloba
Floc length evolution
Flocculation
Machine learning
Neural network
Smart water treatment
Evolução do comprimento dos flocos
Floculação
Aprendizado de máquina
Rede neural
Tratamento inteligente de água
title_short Machine learning framework for optimization of flocculation process of water treatment
title_full Machine learning framework for optimization of flocculation process of water treatment
title_fullStr Machine learning framework for optimization of flocculation process of water treatment
title_full_unstemmed Machine learning framework for optimization of flocculation process of water treatment
title_sort Machine learning framework for optimization of flocculation process of water treatment
author Bankole, Abayomi Oluwatobiloba
author_facet Bankole, Abayomi Oluwatobiloba
author_role author
dc.contributor.none.fl_str_mv Moruzzi, Rodrigo Braga [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Bankole, Abayomi Oluwatobiloba
dc.subject.por.fl_str_mv Floc length evolution
Flocculation
Machine learning
Neural network
Smart water treatment
Evolução do comprimento dos flocos
Floculação
Aprendizado de máquina
Rede neural
Tratamento inteligente de água
topic Floc length evolution
Flocculation
Machine learning
Neural network
Smart water treatment
Evolução do comprimento dos flocos
Floculação
Aprendizado de máquina
Rede neural
Tratamento inteligente de água
description The implementation of machine learning (ML) model that could improve both the effectiveness and sustainability of water treatment system is a major problem in the water sector, with the optimization of flocculation process being a major setback. In this study, we have developed the first ML model for floc length evolution monitoring and a framework for its potential adoption in large-scale water treatment. Artificial Neural Network (ANN) and Long-Short Term Memory (LSTM) models, and traditional time series model; Auto Regressive Integrated Moving Average (ARIMA) were explored to predict floc length evolution data that was obtained through non-intrusive image analysis from a jar test batch assay and model the orthokinetic process. Batch assay data of two velocity gradient (Gf 20 sec-1 and 60 sec-1) and flocculation time of 3hrs were partitioned into 5 bins for floc length range 0.27 – 3.5 mm and upscaled using linear method. Results showed that ARIMA model is not suitable for predicting number of flocs with a negative test accuracy (R2). ANN recorded R2 of 0.86 – 1.0 for training and 0.84 – 0.99 for testing, across Gf 20 sec-1 and Gf 60 sec-1. LSTM model has the best prediction accuracy of 98 – 100% for Gf 20 sec-1 and perfect prediction of number of flocs across all bins and Gfs. Our study has proven that the developed framework can be replicated in large scale water treatment and will promote application of smart technology in large-scale water/wastewater treatment.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-20T17:33:14Z
2023-06-20T17:33:14Z
2023-06-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/244140
33004056089P5
url http://hdl.handle.net/11449/244140
identifier_str_mv 33004056089P5
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129452431900672