Machine learning framework for optimization of flocculation process of water treatment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/244140 |
Resumo: | The implementation of machine learning (ML) model that could improve both the effectiveness and sustainability of water treatment system is a major problem in the water sector, with the optimization of flocculation process being a major setback. In this study, we have developed the first ML model for floc length evolution monitoring and a framework for its potential adoption in large-scale water treatment. Artificial Neural Network (ANN) and Long-Short Term Memory (LSTM) models, and traditional time series model; Auto Regressive Integrated Moving Average (ARIMA) were explored to predict floc length evolution data that was obtained through non-intrusive image analysis from a jar test batch assay and model the orthokinetic process. Batch assay data of two velocity gradient (Gf 20 sec-1 and 60 sec-1) and flocculation time of 3hrs were partitioned into 5 bins for floc length range 0.27 – 3.5 mm and upscaled using linear method. Results showed that ARIMA model is not suitable for predicting number of flocs with a negative test accuracy (R2). ANN recorded R2 of 0.86 – 1.0 for training and 0.84 – 0.99 for testing, across Gf 20 sec-1 and Gf 60 sec-1. LSTM model has the best prediction accuracy of 98 – 100% for Gf 20 sec-1 and perfect prediction of number of flocs across all bins and Gfs. Our study has proven that the developed framework can be replicated in large scale water treatment and will promote application of smart technology in large-scale water/wastewater treatment. |
id |
UNSP_f9ab8801b9594c1d19dc7294df4a2811 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/244140 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Machine learning framework for optimization of flocculation process of water treatmentFramework de aprendizado de máquina para otimização do processo de floculação de tratamento de águaFloc length evolutionFlocculationMachine learningNeural networkSmart water treatmentEvolução do comprimento dos flocosFloculaçãoAprendizado de máquinaRede neuralTratamento inteligente de águaThe implementation of machine learning (ML) model that could improve both the effectiveness and sustainability of water treatment system is a major problem in the water sector, with the optimization of flocculation process being a major setback. In this study, we have developed the first ML model for floc length evolution monitoring and a framework for its potential adoption in large-scale water treatment. Artificial Neural Network (ANN) and Long-Short Term Memory (LSTM) models, and traditional time series model; Auto Regressive Integrated Moving Average (ARIMA) were explored to predict floc length evolution data that was obtained through non-intrusive image analysis from a jar test batch assay and model the orthokinetic process. Batch assay data of two velocity gradient (Gf 20 sec-1 and 60 sec-1) and flocculation time of 3hrs were partitioned into 5 bins for floc length range 0.27 – 3.5 mm and upscaled using linear method. Results showed that ARIMA model is not suitable for predicting number of flocs with a negative test accuracy (R2). ANN recorded R2 of 0.86 – 1.0 for training and 0.84 – 0.99 for testing, across Gf 20 sec-1 and Gf 60 sec-1. LSTM model has the best prediction accuracy of 98 – 100% for Gf 20 sec-1 and perfect prediction of number of flocs across all bins and Gfs. Our study has proven that the developed framework can be replicated in large scale water treatment and will promote application of smart technology in large-scale water/wastewater treatment.A implementação do modelo de aprendizado de máquina (ML) que poderia melhorar tanto a eficácia como a sustentabilidade do sistema de tratamento de água é um grande problema no setor de água, com a otimização do processo de floculação sendo um grande obstáculo. Neste estudo, desenvolvemos o primeiro modelo ML para monitoramento da evolução do comprimento dos flocos e uma estrutura para sua potencial adoção em tratamento de água em larga escala. Modelos de Rede Neural Artificial (ANN) e Memória de Curto e Longo Prazo (LSTM), juntamente com o modelo tradicional de séries temporais: Média Móvel Integrada Regressiva Automática (ARIMA), foram explorados para prever os dados de evolução do comprimento dos flocos obtidos por análise de imagem não intrusiva de um ensaio de teste em lote e modelar o processo otocinético. Os dados do ensaio em lote, com dois gradientes de velocidade (Gf 20 seg-1 e 60 seg-1 ) e tempo de floculação de 3 horas, foram divididos em 5 intervalos para faixas de comprimento de floco de 0,27 a 3,5 mm e otmizados usando o método linear. Os resultados mostraram que o modelo ARIMA não é adequado para prever o número de flocos, com uma acurácia de teste negativa (R2 ). A ANN registrou R2 de 0,86 – 1,0 para treinamento e 0,84 – 0,99 para teste, em Gf 20 seg-1 e Gf 60 seg-1 . O modelo LSTM tem a melhor precisão de previsão de 98 – 100% para Gf 20 seg -1 e previsão perfeita do número de flocos em todas os intervalos e Gfs. Nosso estudo comprovou que a estrutura desenvolvida pode ser replicada em tratamento de água em larga escala e promoverá a aplicação de tecnologia inteligente em tratamento de água/esgoto em larga escalaOutraUniversidade Estadual Paulista (Unesp)Moruzzi, Rodrigo Braga [UNESP]Universidade Estadual Paulista (Unesp)Bankole, Abayomi Oluwatobiloba2023-06-20T17:33:14Z2023-06-20T17:33:14Z2023-06-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/24414033004056089P5enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-28T18:58:13Zoai:repositorio.unesp.br:11449/244140Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:41:50.382363Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Machine learning framework for optimization of flocculation process of water treatment Framework de aprendizado de máquina para otimização do processo de floculação de tratamento de água |
title |
Machine learning framework for optimization of flocculation process of water treatment |
spellingShingle |
Machine learning framework for optimization of flocculation process of water treatment Bankole, Abayomi Oluwatobiloba Floc length evolution Flocculation Machine learning Neural network Smart water treatment Evolução do comprimento dos flocos Floculação Aprendizado de máquina Rede neural Tratamento inteligente de água |
title_short |
Machine learning framework for optimization of flocculation process of water treatment |
title_full |
Machine learning framework for optimization of flocculation process of water treatment |
title_fullStr |
Machine learning framework for optimization of flocculation process of water treatment |
title_full_unstemmed |
Machine learning framework for optimization of flocculation process of water treatment |
title_sort |
Machine learning framework for optimization of flocculation process of water treatment |
author |
Bankole, Abayomi Oluwatobiloba |
author_facet |
Bankole, Abayomi Oluwatobiloba |
author_role |
author |
dc.contributor.none.fl_str_mv |
Moruzzi, Rodrigo Braga [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Bankole, Abayomi Oluwatobiloba |
dc.subject.por.fl_str_mv |
Floc length evolution Flocculation Machine learning Neural network Smart water treatment Evolução do comprimento dos flocos Floculação Aprendizado de máquina Rede neural Tratamento inteligente de água |
topic |
Floc length evolution Flocculation Machine learning Neural network Smart water treatment Evolução do comprimento dos flocos Floculação Aprendizado de máquina Rede neural Tratamento inteligente de água |
description |
The implementation of machine learning (ML) model that could improve both the effectiveness and sustainability of water treatment system is a major problem in the water sector, with the optimization of flocculation process being a major setback. In this study, we have developed the first ML model for floc length evolution monitoring and a framework for its potential adoption in large-scale water treatment. Artificial Neural Network (ANN) and Long-Short Term Memory (LSTM) models, and traditional time series model; Auto Regressive Integrated Moving Average (ARIMA) were explored to predict floc length evolution data that was obtained through non-intrusive image analysis from a jar test batch assay and model the orthokinetic process. Batch assay data of two velocity gradient (Gf 20 sec-1 and 60 sec-1) and flocculation time of 3hrs were partitioned into 5 bins for floc length range 0.27 – 3.5 mm and upscaled using linear method. Results showed that ARIMA model is not suitable for predicting number of flocs with a negative test accuracy (R2). ANN recorded R2 of 0.86 – 1.0 for training and 0.84 – 0.99 for testing, across Gf 20 sec-1 and Gf 60 sec-1. LSTM model has the best prediction accuracy of 98 – 100% for Gf 20 sec-1 and perfect prediction of number of flocs across all bins and Gfs. Our study has proven that the developed framework can be replicated in large scale water treatment and will promote application of smart technology in large-scale water/wastewater treatment. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-20T17:33:14Z 2023-06-20T17:33:14Z 2023-06-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/244140 33004056089P5 |
url |
http://hdl.handle.net/11449/244140 |
identifier_str_mv |
33004056089P5 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129452431900672 |