Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PES.2007.385636 http://hdl.handle.net/11449/70029 |
Resumo: | Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE. |
id |
UNSP_fa06c34bd135a83b8a5caae9333fd91d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/70029 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase caseClarke's matrixEigenvalueEigenvectorFrequencyMode domainTransformation matrixTransmission linesEigenvalues and eigenfunctionsError analysisMathematical transformationsMatrix algebraThree-phase caseElectric linesSome constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.IEEEElectrical Engineering Department DEE/CTU/UEL Londirna State UniversityElectrical Engineering Department DEE/FEIS/UNESP Paulista State UniversityElectrical Engineering Department DSCE/FEEC/UNICAMP Campinas University StateElectrical Engineering Department DEE/FEIS/UNESP Paulista State UniversityIEEELondirna State UniversityUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Prado, A. J.Filho, J. PissolatoKurokawa, S. [UNESP]Bovolato, L. F. [UNESP]2014-05-27T11:22:40Z2014-05-27T11:22:40Z2007-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PES.2007.3856362007 IEEE Power Engineering Society General Meeting, PES.http://hdl.handle.net/11449/7002910.1109/PES.2007.3856362-s2.0-425490838104830845230549223905011498606590378706478550058207870647855005820Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2007 IEEE Power Engineering Society General Meeting, PESinfo:eu-repo/semantics/openAccess2024-07-04T19:11:55Zoai:repositorio.unesp.br:11449/70029Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:26:02.189133Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case |
title |
Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case |
spellingShingle |
Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case Prado, A. J. Clarke's matrix Eigenvalue Eigenvector Frequency Mode domain Transformation matrix Transmission lines Eigenvalues and eigenfunctions Error analysis Mathematical transformations Matrix algebra Three-phase case Electric lines |
title_short |
Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case |
title_full |
Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case |
title_fullStr |
Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case |
title_full_unstemmed |
Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case |
title_sort |
Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case |
author |
Prado, A. J. |
author_facet |
Prado, A. J. Filho, J. Pissolato Kurokawa, S. [UNESP] Bovolato, L. F. [UNESP] |
author_role |
author |
author2 |
Filho, J. Pissolato Kurokawa, S. [UNESP] Bovolato, L. F. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
IEEE Londirna State University Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Prado, A. J. Filho, J. Pissolato Kurokawa, S. [UNESP] Bovolato, L. F. [UNESP] |
dc.subject.por.fl_str_mv |
Clarke's matrix Eigenvalue Eigenvector Frequency Mode domain Transformation matrix Transmission lines Eigenvalues and eigenfunctions Error analysis Mathematical transformations Matrix algebra Three-phase case Electric lines |
topic |
Clarke's matrix Eigenvalue Eigenvector Frequency Mode domain Transformation matrix Transmission lines Eigenvalues and eigenfunctions Error analysis Mathematical transformations Matrix algebra Three-phase case Electric lines |
description |
Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12-01 2014-05-27T11:22:40Z 2014-05-27T11:22:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PES.2007.385636 2007 IEEE Power Engineering Society General Meeting, PES. http://hdl.handle.net/11449/70029 10.1109/PES.2007.385636 2-s2.0-42549083810 4830845230549223 9050114986065903 7870647855005820 7870647855005820 |
url |
http://dx.doi.org/10.1109/PES.2007.385636 http://hdl.handle.net/11449/70029 |
identifier_str_mv |
2007 IEEE Power Engineering Society General Meeting, PES. 10.1109/PES.2007.385636 2-s2.0-42549083810 4830845230549223 9050114986065903 7870647855005820 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2007 IEEE Power Engineering Society General Meeting, PES |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129520512794624 |