Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case

Detalhes bibliográficos
Autor(a) principal: Prado, A. J.
Data de Publicação: 2007
Outros Autores: Filho, J. Pissolato, Kurokawa, S. [UNESP], Bovolato, L. F. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/PES.2007.385636
http://hdl.handle.net/11449/70029
Resumo: Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.
id UNSP_fa06c34bd135a83b8a5caae9333fd91d
oai_identifier_str oai:repositorio.unesp.br:11449/70029
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase caseClarke's matrixEigenvalueEigenvectorFrequencyMode domainTransformation matrixTransmission linesEigenvalues and eigenfunctionsError analysisMathematical transformationsMatrix algebraThree-phase caseElectric linesSome constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.IEEEElectrical Engineering Department DEE/CTU/UEL Londirna State UniversityElectrical Engineering Department DEE/FEIS/UNESP Paulista State UniversityElectrical Engineering Department DSCE/FEEC/UNICAMP Campinas University StateElectrical Engineering Department DEE/FEIS/UNESP Paulista State UniversityIEEELondirna State UniversityUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Prado, A. J.Filho, J. PissolatoKurokawa, S. [UNESP]Bovolato, L. F. [UNESP]2014-05-27T11:22:40Z2014-05-27T11:22:40Z2007-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PES.2007.3856362007 IEEE Power Engineering Society General Meeting, PES.http://hdl.handle.net/11449/7002910.1109/PES.2007.3856362-s2.0-425490838104830845230549223905011498606590378706478550058207870647855005820Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2007 IEEE Power Engineering Society General Meeting, PESinfo:eu-repo/semantics/openAccess2024-07-04T19:11:55Zoai:repositorio.unesp.br:11449/70029Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:26:02.189133Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case
title Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case
spellingShingle Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case
Prado, A. J.
Clarke's matrix
Eigenvalue
Eigenvector
Frequency
Mode domain
Transformation matrix
Transmission lines
Eigenvalues and eigenfunctions
Error analysis
Mathematical transformations
Matrix algebra
Three-phase case
Electric lines
title_short Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case
title_full Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case
title_fullStr Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case
title_full_unstemmed Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case
title_sort Modal transformation obtained from Clarke's matrix - Asymmetrical three-phase case
author Prado, A. J.
author_facet Prado, A. J.
Filho, J. Pissolato
Kurokawa, S. [UNESP]
Bovolato, L. F. [UNESP]
author_role author
author2 Filho, J. Pissolato
Kurokawa, S. [UNESP]
Bovolato, L. F. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv IEEE
Londirna State University
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Prado, A. J.
Filho, J. Pissolato
Kurokawa, S. [UNESP]
Bovolato, L. F. [UNESP]
dc.subject.por.fl_str_mv Clarke's matrix
Eigenvalue
Eigenvector
Frequency
Mode domain
Transformation matrix
Transmission lines
Eigenvalues and eigenfunctions
Error analysis
Mathematical transformations
Matrix algebra
Three-phase case
Electric lines
topic Clarke's matrix
Eigenvalue
Eigenvector
Frequency
Mode domain
Transformation matrix
Transmission lines
Eigenvalues and eigenfunctions
Error analysis
Mathematical transformations
Matrix algebra
Three-phase case
Electric lines
description Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.
publishDate 2007
dc.date.none.fl_str_mv 2007-12-01
2014-05-27T11:22:40Z
2014-05-27T11:22:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/PES.2007.385636
2007 IEEE Power Engineering Society General Meeting, PES.
http://hdl.handle.net/11449/70029
10.1109/PES.2007.385636
2-s2.0-42549083810
4830845230549223
9050114986065903
7870647855005820
7870647855005820
url http://dx.doi.org/10.1109/PES.2007.385636
http://hdl.handle.net/11449/70029
identifier_str_mv 2007 IEEE Power Engineering Society General Meeting, PES.
10.1109/PES.2007.385636
2-s2.0-42549083810
4830845230549223
9050114986065903
7870647855005820
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2007 IEEE Power Engineering Society General Meeting, PES
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129520512794624