An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method

Detalhes bibliográficos
Autor(a) principal: Marucci, Evandro A. [UNESP]
Data de Publicação: 2014
Outros Autores: Zafalon, Geraldo F. D. [UNESP], Momente, Julio C. [UNESP], Neves, Leandro A. [UNESP], Valencio, Carlo R. [UNESP], Pinto, Alex R., Cansian, Adriano M. [UNESP], Souza, Rogeria C. G. de [UNESP], Yang Shiyou, Machado, Jose M. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1155/2014/563016
http://hdl.handle.net/11449/117235
Resumo: With the advance of genomic researches, the number of sequences involved in comparative methods has grown immensely. Among them, there are methods for similarities calculation, which are used by many bioinformatics applications. Due the huge amount of data, the union of low complexity methods with the use of parallel computing is becoming desirable. The k-mers counting is a very efficient method with good biological results. In this work, the development of a parallel algorithm for multiple sequence similarities calculation using the k-mers counting method is proposed. Tests show that the algorithm presents a very good scalability and a nearly linear speedup. For 14 nodes was obtained 12x speedup. This algorithm can be used in the parallelization of some multiple sequence alignment tools, such as MAFFT and MUSCLE.
id UNSP_fac0d9ab6e099ba55520d539d9afee98
oai_identifier_str oai:repositorio.unesp.br:11449/117235
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity MethodWith the advance of genomic researches, the number of sequences involved in comparative methods has grown immensely. Among them, there are methods for similarities calculation, which are used by many bioinformatics applications. Due the huge amount of data, the union of low complexity methods with the use of parallel computing is becoming desirable. The k-mers counting is a very efficient method with good biological results. In this work, the development of a parallel algorithm for multiple sequence similarities calculation using the k-mers counting method is proposed. Tests show that the algorithm presents a very good scalability and a nearly linear speedup. For 14 nodes was obtained 12x speedup. This algorithm can be used in the parallelization of some multiple sequence alignment tools, such as MAFFT and MUSCLE.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUniv Fed Santa Catarina, Dept Control Engn & Automat, BR-89065300 Blumenau, SC, BrazilZhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R ChinaSao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilFAPESP: 06/59592-0Hindawi Publishing CorporationUniversidade Estadual Paulista (Unesp)Universidade Federal de Santa Catarina (UFSC)Zhejiang UnivMarucci, Evandro A. [UNESP]Zafalon, Geraldo F. D. [UNESP]Momente, Julio C. [UNESP]Neves, Leandro A. [UNESP]Valencio, Carlo R. [UNESP]Pinto, Alex R.Cansian, Adriano M. [UNESP]Souza, Rogeria C. G. de [UNESP]Yang ShiyouMachado, Jose M. [UNESP]2015-03-18T15:55:36Z2015-03-18T15:55:36Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article6application/epub+zipapplication/pdfhttp://dx.doi.org/10.1155/2014/563016Biomed Research International. New York: Hindawi Publishing Corporation, 6 p., 2014.2314-6133http://hdl.handle.net/11449/11723510.1155/2014/563016WOS:000340143200001WOS000340143200001.pdfWOS000340143200001.epub00959219433459740000-0003-4494-1454Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiomed Research International2.5830,935info:eu-repo/semantics/openAccess2023-12-02T06:12:32Zoai:repositorio.unesp.br:11449/117235Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:17:19.844721Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
title An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
spellingShingle An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
Marucci, Evandro A. [UNESP]
title_short An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
title_full An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
title_fullStr An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
title_full_unstemmed An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
title_sort An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
author Marucci, Evandro A. [UNESP]
author_facet Marucci, Evandro A. [UNESP]
Zafalon, Geraldo F. D. [UNESP]
Momente, Julio C. [UNESP]
Neves, Leandro A. [UNESP]
Valencio, Carlo R. [UNESP]
Pinto, Alex R.
Cansian, Adriano M. [UNESP]
Souza, Rogeria C. G. de [UNESP]
Yang Shiyou
Machado, Jose M. [UNESP]
author_role author
author2 Zafalon, Geraldo F. D. [UNESP]
Momente, Julio C. [UNESP]
Neves, Leandro A. [UNESP]
Valencio, Carlo R. [UNESP]
Pinto, Alex R.
Cansian, Adriano M. [UNESP]
Souza, Rogeria C. G. de [UNESP]
Yang Shiyou
Machado, Jose M. [UNESP]
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de Santa Catarina (UFSC)
Zhejiang Univ
dc.contributor.author.fl_str_mv Marucci, Evandro A. [UNESP]
Zafalon, Geraldo F. D. [UNESP]
Momente, Julio C. [UNESP]
Neves, Leandro A. [UNESP]
Valencio, Carlo R. [UNESP]
Pinto, Alex R.
Cansian, Adriano M. [UNESP]
Souza, Rogeria C. G. de [UNESP]
Yang Shiyou
Machado, Jose M. [UNESP]
description With the advance of genomic researches, the number of sequences involved in comparative methods has grown immensely. Among them, there are methods for similarities calculation, which are used by many bioinformatics applications. Due the huge amount of data, the union of low complexity methods with the use of parallel computing is becoming desirable. The k-mers counting is a very efficient method with good biological results. In this work, the development of a parallel algorithm for multiple sequence similarities calculation using the k-mers counting method is proposed. Tests show that the algorithm presents a very good scalability and a nearly linear speedup. For 14 nodes was obtained 12x speedup. This algorithm can be used in the parallelization of some multiple sequence alignment tools, such as MAFFT and MUSCLE.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01
2015-03-18T15:55:36Z
2015-03-18T15:55:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1155/2014/563016
Biomed Research International. New York: Hindawi Publishing Corporation, 6 p., 2014.
2314-6133
http://hdl.handle.net/11449/117235
10.1155/2014/563016
WOS:000340143200001
WOS000340143200001.pdf
WOS000340143200001.epub
0095921943345974
0000-0003-4494-1454
url http://dx.doi.org/10.1155/2014/563016
http://hdl.handle.net/11449/117235
identifier_str_mv Biomed Research International. New York: Hindawi Publishing Corporation, 6 p., 2014.
2314-6133
10.1155/2014/563016
WOS:000340143200001
WOS000340143200001.pdf
WOS000340143200001.epub
0095921943345974
0000-0003-4494-1454
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biomed Research International
2.583
0,935
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 6
application/epub+zip
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129047189782528