An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1155/2014/563016 http://hdl.handle.net/11449/117235 |
Resumo: | With the advance of genomic researches, the number of sequences involved in comparative methods has grown immensely. Among them, there are methods for similarities calculation, which are used by many bioinformatics applications. Due the huge amount of data, the union of low complexity methods with the use of parallel computing is becoming desirable. The k-mers counting is a very efficient method with good biological results. In this work, the development of a parallel algorithm for multiple sequence similarities calculation using the k-mers counting method is proposed. Tests show that the algorithm presents a very good scalability and a nearly linear speedup. For 14 nodes was obtained 12x speedup. This algorithm can be used in the parallelization of some multiple sequence alignment tools, such as MAFFT and MUSCLE. |
id |
UNSP_fac0d9ab6e099ba55520d539d9afee98 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/117235 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity MethodWith the advance of genomic researches, the number of sequences involved in comparative methods has grown immensely. Among them, there are methods for similarities calculation, which are used by many bioinformatics applications. Due the huge amount of data, the union of low complexity methods with the use of parallel computing is becoming desirable. The k-mers counting is a very efficient method with good biological results. In this work, the development of a parallel algorithm for multiple sequence similarities calculation using the k-mers counting method is proposed. Tests show that the algorithm presents a very good scalability and a nearly linear speedup. For 14 nodes was obtained 12x speedup. This algorithm can be used in the parallelization of some multiple sequence alignment tools, such as MAFFT and MUSCLE.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUniv Fed Santa Catarina, Dept Control Engn & Automat, BR-89065300 Blumenau, SC, BrazilZhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R ChinaSao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilFAPESP: 06/59592-0Hindawi Publishing CorporationUniversidade Estadual Paulista (Unesp)Universidade Federal de Santa Catarina (UFSC)Zhejiang UnivMarucci, Evandro A. [UNESP]Zafalon, Geraldo F. D. [UNESP]Momente, Julio C. [UNESP]Neves, Leandro A. [UNESP]Valencio, Carlo R. [UNESP]Pinto, Alex R.Cansian, Adriano M. [UNESP]Souza, Rogeria C. G. de [UNESP]Yang ShiyouMachado, Jose M. [UNESP]2015-03-18T15:55:36Z2015-03-18T15:55:36Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article6application/epub+zipapplication/pdfhttp://dx.doi.org/10.1155/2014/563016Biomed Research International. New York: Hindawi Publishing Corporation, 6 p., 2014.2314-6133http://hdl.handle.net/11449/11723510.1155/2014/563016WOS:000340143200001WOS000340143200001.pdfWOS000340143200001.epub00959219433459740000-0003-4494-1454Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiomed Research International2.5830,935info:eu-repo/semantics/openAccess2023-12-02T06:12:32Zoai:repositorio.unesp.br:11449/117235Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:17:19.844721Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method |
title |
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method |
spellingShingle |
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method Marucci, Evandro A. [UNESP] |
title_short |
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method |
title_full |
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method |
title_fullStr |
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method |
title_full_unstemmed |
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method |
title_sort |
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method |
author |
Marucci, Evandro A. [UNESP] |
author_facet |
Marucci, Evandro A. [UNESP] Zafalon, Geraldo F. D. [UNESP] Momente, Julio C. [UNESP] Neves, Leandro A. [UNESP] Valencio, Carlo R. [UNESP] Pinto, Alex R. Cansian, Adriano M. [UNESP] Souza, Rogeria C. G. de [UNESP] Yang Shiyou Machado, Jose M. [UNESP] |
author_role |
author |
author2 |
Zafalon, Geraldo F. D. [UNESP] Momente, Julio C. [UNESP] Neves, Leandro A. [UNESP] Valencio, Carlo R. [UNESP] Pinto, Alex R. Cansian, Adriano M. [UNESP] Souza, Rogeria C. G. de [UNESP] Yang Shiyou Machado, Jose M. [UNESP] |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de Santa Catarina (UFSC) Zhejiang Univ |
dc.contributor.author.fl_str_mv |
Marucci, Evandro A. [UNESP] Zafalon, Geraldo F. D. [UNESP] Momente, Julio C. [UNESP] Neves, Leandro A. [UNESP] Valencio, Carlo R. [UNESP] Pinto, Alex R. Cansian, Adriano M. [UNESP] Souza, Rogeria C. G. de [UNESP] Yang Shiyou Machado, Jose M. [UNESP] |
description |
With the advance of genomic researches, the number of sequences involved in comparative methods has grown immensely. Among them, there are methods for similarities calculation, which are used by many bioinformatics applications. Due the huge amount of data, the union of low complexity methods with the use of parallel computing is becoming desirable. The k-mers counting is a very efficient method with good biological results. In this work, the development of a parallel algorithm for multiple sequence similarities calculation using the k-mers counting method is proposed. Tests show that the algorithm presents a very good scalability and a nearly linear speedup. For 14 nodes was obtained 12x speedup. This algorithm can be used in the parallelization of some multiple sequence alignment tools, such as MAFFT and MUSCLE. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2015-03-18T15:55:36Z 2015-03-18T15:55:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1155/2014/563016 Biomed Research International. New York: Hindawi Publishing Corporation, 6 p., 2014. 2314-6133 http://hdl.handle.net/11449/117235 10.1155/2014/563016 WOS:000340143200001 WOS000340143200001.pdf WOS000340143200001.epub 0095921943345974 0000-0003-4494-1454 |
url |
http://dx.doi.org/10.1155/2014/563016 http://hdl.handle.net/11449/117235 |
identifier_str_mv |
Biomed Research International. New York: Hindawi Publishing Corporation, 6 p., 2014. 2314-6133 10.1155/2014/563016 WOS:000340143200001 WOS000340143200001.pdf WOS000340143200001.epub 0095921943345974 0000-0003-4494-1454 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Biomed Research International 2.583 0,935 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
6 application/epub+zip application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129047189782528 |