Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação

Detalhes bibliográficos
Autor(a) principal: Leda, Victor Costa [UNESP]
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/143945
Resumo: A produção da cana-de-açúcar é destaque no cenário econômico do estado São Paulo, dessa forma confirma-se a necessidade do monitoramento dessa cultura, de maneira a contribuir com melhorias em decisões e planejamentos operacionais. A produção total e a produtividade da cana-de-açúcar são fatores de grande interesse para os agricultores, pois é a partir dessa informação que a programação das operações são realizadas, porém, essas estimativas não possuem métodos de alta precisão e confiança em amostragens não destrutivas. O homem possui excelente capacidade de analisar e interpretar resultados, mas também está sujeito a subjetividades em suas avaliações. A análise empreendida no trabalho teve como objetivo a elaboração de modelos matemáticos que expliquem a produtividade da cana-de-açúcar por meio das técnicas de geoprocessamento e sensoriamento remoto. O experimento foi realizado na área de produção comercial da Agrícola Rio Claro, parceira do grupo Zilor, que está localizada nos municípios de Lençóis Paulista e Pratânia, possui aproximadamente 6000 hectares, com altimetrias variando entre 600 e 700 metros. Para a coleta das informações espectrais, utilizou-se as imagens do satélite Landsat 8, com órbita/ponto em 221/076. Nos resultados do trabalho realizado, constatou-se que as modelagens foram satisfatórias, variando o coeficiente de determinação entre 0,15 a 0,97. Sendo que em períodos com elevados coeficientes de determinação, podem geralmente ser encontradas áreas de forma aglomerada, o que sugere uma menor incidência de variáveis. Enquanto que em períodos com coeficientes de determinação baixos, muito provavelmente foram obtidos devido a outros fatores listados terem ocorrido como dispersão dos talhões na área, classes de solo, precipitação e variedades da cultura, provavelmente distintos.
id UNSP_fc8079e3765fd6af5e01ba605792f862
oai_identifier_str oai:repositorio.unesp.br:11449/143945
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetaçãoSugarcane productivity modeling using vegetation indexRegressão linear múltiplaNDVIMSAVI2EVILandsat 8Multiple linear regressionA produção da cana-de-açúcar é destaque no cenário econômico do estado São Paulo, dessa forma confirma-se a necessidade do monitoramento dessa cultura, de maneira a contribuir com melhorias em decisões e planejamentos operacionais. A produção total e a produtividade da cana-de-açúcar são fatores de grande interesse para os agricultores, pois é a partir dessa informação que a programação das operações são realizadas, porém, essas estimativas não possuem métodos de alta precisão e confiança em amostragens não destrutivas. O homem possui excelente capacidade de analisar e interpretar resultados, mas também está sujeito a subjetividades em suas avaliações. A análise empreendida no trabalho teve como objetivo a elaboração de modelos matemáticos que expliquem a produtividade da cana-de-açúcar por meio das técnicas de geoprocessamento e sensoriamento remoto. O experimento foi realizado na área de produção comercial da Agrícola Rio Claro, parceira do grupo Zilor, que está localizada nos municípios de Lençóis Paulista e Pratânia, possui aproximadamente 6000 hectares, com altimetrias variando entre 600 e 700 metros. Para a coleta das informações espectrais, utilizou-se as imagens do satélite Landsat 8, com órbita/ponto em 221/076. Nos resultados do trabalho realizado, constatou-se que as modelagens foram satisfatórias, variando o coeficiente de determinação entre 0,15 a 0,97. Sendo que em períodos com elevados coeficientes de determinação, podem geralmente ser encontradas áreas de forma aglomerada, o que sugere uma menor incidência de variáveis. Enquanto que em períodos com coeficientes de determinação baixos, muito provavelmente foram obtidos devido a outros fatores listados terem ocorrido como dispersão dos talhões na área, classes de solo, precipitação e variedades da cultura, provavelmente distintos.The production of sugarcane is a highlight in the economic scenario in the state of São Paulo, thus it confirms the need of monitoring this culture, in order to contribute to improvements in making decisions and operational planning.The production and productivity of sugarcane are factors of great interest to farmers, because, from this information the planning of operations is performed out, however, these estimates do not have high precision and reliable methods for non-destructive sampling.The human has an excellent ability to analyze and interpret results, but may also be affected by the subjectivity of their evaluations.The analysis undertaken in this work aimed at the development of mathematical models to explain the productivity of sugarcane through geoprocessing and remote sensing.The experiment was conducted in commercial area of Agrícola Rio Claro, partner of Zilor group, which is located in Lençóis Paulista and Pratânia, of approximately 6000 hectares, with altimetry ranging between 600 and 700 meters. For the collection of the spectral information, it was used the images of the satellite Landsat 8, with orbit/point 221/076. The results of the work, it was found that all the modeling were satisfactory, varying the coefficient of determination between 0.15 to 0.97. Given that, in periods with high coefficients of determination areas may be generally found in clusters, suggesting a lower incidence of variables. While in periods of low coefficient of determination, it was most likely obtained due to other factors listed of having occurred such as a dispersion of the plots in the area, soil types, rainfall and varieties, probably distinctly.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista (Unesp)Zimback, Célia Regina Lopes [UNESP]Universidade Estadual Paulista (Unesp)Leda, Victor Costa [UNESP]2016-09-22T19:30:58Z2016-09-22T19:30:58Z2016-07-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/14394500087283333004064021P7porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-05-02T14:10:55Zoai:repositorio.unesp.br:11449/143945Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:27:32.856245Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação
Sugarcane productivity modeling using vegetation index
title Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação
spellingShingle Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação
Leda, Victor Costa [UNESP]
Regressão linear múltipla
NDVI
MSAVI2
EVI
Landsat 8
Multiple linear regression
title_short Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação
title_full Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação
title_fullStr Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação
title_full_unstemmed Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação
title_sort Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação
author Leda, Victor Costa [UNESP]
author_facet Leda, Victor Costa [UNESP]
author_role author
dc.contributor.none.fl_str_mv Zimback, Célia Regina Lopes [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Leda, Victor Costa [UNESP]
dc.subject.por.fl_str_mv Regressão linear múltipla
NDVI
MSAVI2
EVI
Landsat 8
Multiple linear regression
topic Regressão linear múltipla
NDVI
MSAVI2
EVI
Landsat 8
Multiple linear regression
description A produção da cana-de-açúcar é destaque no cenário econômico do estado São Paulo, dessa forma confirma-se a necessidade do monitoramento dessa cultura, de maneira a contribuir com melhorias em decisões e planejamentos operacionais. A produção total e a produtividade da cana-de-açúcar são fatores de grande interesse para os agricultores, pois é a partir dessa informação que a programação das operações são realizadas, porém, essas estimativas não possuem métodos de alta precisão e confiança em amostragens não destrutivas. O homem possui excelente capacidade de analisar e interpretar resultados, mas também está sujeito a subjetividades em suas avaliações. A análise empreendida no trabalho teve como objetivo a elaboração de modelos matemáticos que expliquem a produtividade da cana-de-açúcar por meio das técnicas de geoprocessamento e sensoriamento remoto. O experimento foi realizado na área de produção comercial da Agrícola Rio Claro, parceira do grupo Zilor, que está localizada nos municípios de Lençóis Paulista e Pratânia, possui aproximadamente 6000 hectares, com altimetrias variando entre 600 e 700 metros. Para a coleta das informações espectrais, utilizou-se as imagens do satélite Landsat 8, com órbita/ponto em 221/076. Nos resultados do trabalho realizado, constatou-se que as modelagens foram satisfatórias, variando o coeficiente de determinação entre 0,15 a 0,97. Sendo que em períodos com elevados coeficientes de determinação, podem geralmente ser encontradas áreas de forma aglomerada, o que sugere uma menor incidência de variáveis. Enquanto que em períodos com coeficientes de determinação baixos, muito provavelmente foram obtidos devido a outros fatores listados terem ocorrido como dispersão dos talhões na área, classes de solo, precipitação e variedades da cultura, provavelmente distintos.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-22T19:30:58Z
2016-09-22T19:30:58Z
2016-07-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/143945
000872833
33004064021P7
url http://hdl.handle.net/11449/143945
identifier_str_mv 000872833
33004064021P7
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129204081917952