Ocular Recognition Using Deep Features for Identity Authentication
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/209188 |
Resumo: | Recently, ocular biometrics has been gaining importance in Biometrics due to the poor performance obtained in some cases by biometric systems based on characteristics of the whole face. This paper presents a new method for person authentication based on ocular deep features, which are extracted from the ocular region of the face by using a very deep CNN (Convolutional Neural Network). Another interesting aspect of our method is that, instead of using directly the deep features as input for the authentication system, it uses the difference between the probe and gallery deep features. So, our method adopts a pairwise strategy. A binary support vector machine is trained to determine whether a given difference vector is genuine or impostor. The proposed new method based on such pairwise strategy was evaluated using the ocular left set of the UBIPr dataset and five pre-trained CNN architectures. When using the pre-trained VGG-Face the proposed method obtained a state-of-the-art result (3.18% of Equal Error Rate). |
id |
UNSP_fd6c6b2e42449988d3f22f506917a37e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/209188 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Ocular Recognition Using Deep Features for Identity Authenticationocular biometricsdeep learningconvolutional neural networksperson authenticationRecently, ocular biometrics has been gaining importance in Biometrics due to the poor performance obtained in some cases by biometric systems based on characteristics of the whole face. This paper presents a new method for person authentication based on ocular deep features, which are extracted from the ocular region of the face by using a very deep CNN (Convolutional Neural Network). Another interesting aspect of our method is that, instead of using directly the deep features as input for the authentication system, it uses the difference between the probe and gallery deep features. So, our method adopts a pairwise strategy. A binary support vector machine is trained to determine whether a given difference vector is genuine or impostor. The proposed new method based on such pairwise strategy was evaluated using the ocular left set of the UBIPr dataset and five pre-trained CNN architectures. When using the pre-trained VGG-Face the proposed method obtained a state-of-the-art result (3.18% of Equal Error Rate).Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)NVIDIA Corporation (GPU Grant Program)Sao Paulo State Univ UNESP, Bauru, SP, BrazilSao Paulo State Univ UNESP, Bauru, SP, BrazilCAPES: 001IeeeUniversidade Estadual Paulista (Unesp)Vizoni, Marcelo V. [UNESP]Marana, Aparecido N. [UNESP]Paiva, A. C.Conci, A.Braz, G.Almeida, JDSFernandes, LAF2021-06-25T11:50:56Z2021-06-25T11:50:56Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject155-160Proceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition. New York: Ieee, p. 155-160, 2020.2157-8672http://hdl.handle.net/11449/209188WOS:000615731300028Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Editioninfo:eu-repo/semantics/openAccess2021-10-23T19:23:37Zoai:repositorio.unesp.br:11449/209188Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:59:53.323747Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Ocular Recognition Using Deep Features for Identity Authentication |
title |
Ocular Recognition Using Deep Features for Identity Authentication |
spellingShingle |
Ocular Recognition Using Deep Features for Identity Authentication Vizoni, Marcelo V. [UNESP] ocular biometrics deep learning convolutional neural networks person authentication |
title_short |
Ocular Recognition Using Deep Features for Identity Authentication |
title_full |
Ocular Recognition Using Deep Features for Identity Authentication |
title_fullStr |
Ocular Recognition Using Deep Features for Identity Authentication |
title_full_unstemmed |
Ocular Recognition Using Deep Features for Identity Authentication |
title_sort |
Ocular Recognition Using Deep Features for Identity Authentication |
author |
Vizoni, Marcelo V. [UNESP] |
author_facet |
Vizoni, Marcelo V. [UNESP] Marana, Aparecido N. [UNESP] Paiva, A. C. Conci, A. Braz, G. Almeida, JDS Fernandes, LAF |
author_role |
author |
author2 |
Marana, Aparecido N. [UNESP] Paiva, A. C. Conci, A. Braz, G. Almeida, JDS Fernandes, LAF |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Vizoni, Marcelo V. [UNESP] Marana, Aparecido N. [UNESP] Paiva, A. C. Conci, A. Braz, G. Almeida, JDS Fernandes, LAF |
dc.subject.por.fl_str_mv |
ocular biometrics deep learning convolutional neural networks person authentication |
topic |
ocular biometrics deep learning convolutional neural networks person authentication |
description |
Recently, ocular biometrics has been gaining importance in Biometrics due to the poor performance obtained in some cases by biometric systems based on characteristics of the whole face. This paper presents a new method for person authentication based on ocular deep features, which are extracted from the ocular region of the face by using a very deep CNN (Convolutional Neural Network). Another interesting aspect of our method is that, instead of using directly the deep features as input for the authentication system, it uses the difference between the probe and gallery deep features. So, our method adopts a pairwise strategy. A binary support vector machine is trained to determine whether a given difference vector is genuine or impostor. The proposed new method based on such pairwise strategy was evaluated using the ocular left set of the UBIPr dataset and five pre-trained CNN architectures. When using the pre-trained VGG-Face the proposed method obtained a state-of-the-art result (3.18% of Equal Error Rate). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2021-06-25T11:50:56Z 2021-06-25T11:50:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Proceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition. New York: Ieee, p. 155-160, 2020. 2157-8672 http://hdl.handle.net/11449/209188 WOS:000615731300028 |
identifier_str_mv |
Proceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition. New York: Ieee, p. 155-160, 2020. 2157-8672 WOS:000615731300028 |
url |
http://hdl.handle.net/11449/209188 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
155-160 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128733600546816 |