Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1080/10942912.2017.1352602 http://hdl.handle.net/11449/175665 |
Resumo: | This work aimed to determinate eight beer properties using UV-Vis spectra in combination with principal component regression (PCR) or artificial neural network (ANN) models. A statistical experimental design was performed to generate the calibration data. First, principal component analysis (PCA) was applied to the original spectral data, and the scores in significant PCs were utilized to calibrate both models. PCR showed poor correlation for beer parameters (R2 < 0.61). The ANNs showed satisfactory correlations (R2 = 0.74–0.92) and low relative error considering a variable range (Er < 9%) for most of the beer-quality attributes, but vicinal diketones (R2 = 0.56, Er = 16.69%). Once implemented, this method would be fast and low cost. |
id |
UNSP_ff7a0e27a0569ec7a29552ed50515766 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/175665 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Rapid monitoring of beer-quality attributes based on UV-Vis spectral dataBeer and brewing processChemometricsQuality controlStatisticsUV/Visible spectroscopyThis work aimed to determinate eight beer properties using UV-Vis spectra in combination with principal component regression (PCR) or artificial neural network (ANN) models. A statistical experimental design was performed to generate the calibration data. First, principal component analysis (PCA) was applied to the original spectral data, and the scores in significant PCs were utilized to calibrate both models. PCR showed poor correlation for beer parameters (R2 < 0.61). The ANNs showed satisfactory correlations (R2 = 0.74–0.92) and low relative error considering a variable range (Er < 9%) for most of the beer-quality attributes, but vicinal diketones (R2 = 0.56, Er = 16.69%). Once implemented, this method would be fast and low cost.Departamento de Ciências Biológicas Universidade Estadual Paulista-UNESP/AssisCentro de Ciências Naturais e Humanas (CCNH) Universidade Federal do ABCDepartamento de Ciências Biológicas Universidade Estadual Paulista-UNESP/AssisUniversidade Estadual Paulista (Unesp)Universidade Federal do ABC (UFABC)Coelho de Oliveira, Henrique [UNESP]Elias da Cunha Filho, Júlio Cézar [UNESP]Rocha, José Celso [UNESP]Fernández Núñez, Eutimio Gustavo [UNESP]2018-12-11T17:16:58Z2018-12-11T17:16:58Z2017-12-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1686-1699application/pdfhttp://dx.doi.org/10.1080/10942912.2017.1352602International Journal of Food Properties, v. 20, p. 1686-1699.1532-23861094-2912http://hdl.handle.net/11449/17566510.1080/10942912.2017.13526022-s2.0-850386141752-s2.0-85038614175.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Food Properties0,5130,513info:eu-repo/semantics/openAccess2024-06-13T17:38:20Zoai:repositorio.unesp.br:11449/175665Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:23:03.888818Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Rapid monitoring of beer-quality attributes based on UV-Vis spectral data |
title |
Rapid monitoring of beer-quality attributes based on UV-Vis spectral data |
spellingShingle |
Rapid monitoring of beer-quality attributes based on UV-Vis spectral data Coelho de Oliveira, Henrique [UNESP] Beer and brewing process Chemometrics Quality control Statistics UV/Visible spectroscopy |
title_short |
Rapid monitoring of beer-quality attributes based on UV-Vis spectral data |
title_full |
Rapid monitoring of beer-quality attributes based on UV-Vis spectral data |
title_fullStr |
Rapid monitoring of beer-quality attributes based on UV-Vis spectral data |
title_full_unstemmed |
Rapid monitoring of beer-quality attributes based on UV-Vis spectral data |
title_sort |
Rapid monitoring of beer-quality attributes based on UV-Vis spectral data |
author |
Coelho de Oliveira, Henrique [UNESP] |
author_facet |
Coelho de Oliveira, Henrique [UNESP] Elias da Cunha Filho, Júlio Cézar [UNESP] Rocha, José Celso [UNESP] Fernández Núñez, Eutimio Gustavo [UNESP] |
author_role |
author |
author2 |
Elias da Cunha Filho, Júlio Cézar [UNESP] Rocha, José Celso [UNESP] Fernández Núñez, Eutimio Gustavo [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal do ABC (UFABC) |
dc.contributor.author.fl_str_mv |
Coelho de Oliveira, Henrique [UNESP] Elias da Cunha Filho, Júlio Cézar [UNESP] Rocha, José Celso [UNESP] Fernández Núñez, Eutimio Gustavo [UNESP] |
dc.subject.por.fl_str_mv |
Beer and brewing process Chemometrics Quality control Statistics UV/Visible spectroscopy |
topic |
Beer and brewing process Chemometrics Quality control Statistics UV/Visible spectroscopy |
description |
This work aimed to determinate eight beer properties using UV-Vis spectra in combination with principal component regression (PCR) or artificial neural network (ANN) models. A statistical experimental design was performed to generate the calibration data. First, principal component analysis (PCA) was applied to the original spectral data, and the scores in significant PCs were utilized to calibrate both models. PCR showed poor correlation for beer parameters (R2 < 0.61). The ANNs showed satisfactory correlations (R2 = 0.74–0.92) and low relative error considering a variable range (Er < 9%) for most of the beer-quality attributes, but vicinal diketones (R2 = 0.56, Er = 16.69%). Once implemented, this method would be fast and low cost. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-29 2018-12-11T17:16:58Z 2018-12-11T17:16:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1080/10942912.2017.1352602 International Journal of Food Properties, v. 20, p. 1686-1699. 1532-2386 1094-2912 http://hdl.handle.net/11449/175665 10.1080/10942912.2017.1352602 2-s2.0-85038614175 2-s2.0-85038614175.pdf |
url |
http://dx.doi.org/10.1080/10942912.2017.1352602 http://hdl.handle.net/11449/175665 |
identifier_str_mv |
International Journal of Food Properties, v. 20, p. 1686-1699. 1532-2386 1094-2912 10.1080/10942912.2017.1352602 2-s2.0-85038614175 2-s2.0-85038614175.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Food Properties 0,513 0,513 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1686-1699 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128802104016896 |