Rapid monitoring of beer-quality attributes based on UV-Vis spectral data

Detalhes bibliográficos
Autor(a) principal: Coelho de Oliveira, Henrique [UNESP]
Data de Publicação: 2017
Outros Autores: Elias da Cunha Filho, Júlio Cézar [UNESP], Rocha, José Celso [UNESP], Fernández Núñez, Eutimio Gustavo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/10942912.2017.1352602
http://hdl.handle.net/11449/175665
Resumo: This work aimed to determinate eight beer properties using UV-Vis spectra in combination with principal component regression (PCR) or artificial neural network (ANN) models. A statistical experimental design was performed to generate the calibration data. First, principal component analysis (PCA) was applied to the original spectral data, and the scores in significant PCs were utilized to calibrate both models. PCR showed poor correlation for beer parameters (R2 < 0.61). The ANNs showed satisfactory correlations (R2 = 0.74–0.92) and low relative error considering a variable range (Er < 9%) for most of the beer-quality attributes, but vicinal diketones (R2 = 0.56, Er = 16.69%). Once implemented, this method would be fast and low cost.
id UNSP_ff7a0e27a0569ec7a29552ed50515766
oai_identifier_str oai:repositorio.unesp.br:11449/175665
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Rapid monitoring of beer-quality attributes based on UV-Vis spectral dataBeer and brewing processChemometricsQuality controlStatisticsUV/Visible spectroscopyThis work aimed to determinate eight beer properties using UV-Vis spectra in combination with principal component regression (PCR) or artificial neural network (ANN) models. A statistical experimental design was performed to generate the calibration data. First, principal component analysis (PCA) was applied to the original spectral data, and the scores in significant PCs were utilized to calibrate both models. PCR showed poor correlation for beer parameters (R2 < 0.61). The ANNs showed satisfactory correlations (R2 = 0.74–0.92) and low relative error considering a variable range (Er < 9%) for most of the beer-quality attributes, but vicinal diketones (R2 = 0.56, Er = 16.69%). Once implemented, this method would be fast and low cost.Departamento de Ciências Biológicas Universidade Estadual Paulista-UNESP/AssisCentro de Ciências Naturais e Humanas (CCNH) Universidade Federal do ABCDepartamento de Ciências Biológicas Universidade Estadual Paulista-UNESP/AssisUniversidade Estadual Paulista (Unesp)Universidade Federal do ABC (UFABC)Coelho de Oliveira, Henrique [UNESP]Elias da Cunha Filho, Júlio Cézar [UNESP]Rocha, José Celso [UNESP]Fernández Núñez, Eutimio Gustavo [UNESP]2018-12-11T17:16:58Z2018-12-11T17:16:58Z2017-12-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1686-1699application/pdfhttp://dx.doi.org/10.1080/10942912.2017.1352602International Journal of Food Properties, v. 20, p. 1686-1699.1532-23861094-2912http://hdl.handle.net/11449/17566510.1080/10942912.2017.13526022-s2.0-850386141752-s2.0-85038614175.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Food Properties0,5130,513info:eu-repo/semantics/openAccess2024-06-13T17:38:20Zoai:repositorio.unesp.br:11449/175665Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:23:03.888818Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
title Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
spellingShingle Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
Coelho de Oliveira, Henrique [UNESP]
Beer and brewing process
Chemometrics
Quality control
Statistics
UV/Visible spectroscopy
title_short Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
title_full Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
title_fullStr Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
title_full_unstemmed Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
title_sort Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
author Coelho de Oliveira, Henrique [UNESP]
author_facet Coelho de Oliveira, Henrique [UNESP]
Elias da Cunha Filho, Júlio Cézar [UNESP]
Rocha, José Celso [UNESP]
Fernández Núñez, Eutimio Gustavo [UNESP]
author_role author
author2 Elias da Cunha Filho, Júlio Cézar [UNESP]
Rocha, José Celso [UNESP]
Fernández Núñez, Eutimio Gustavo [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal do ABC (UFABC)
dc.contributor.author.fl_str_mv Coelho de Oliveira, Henrique [UNESP]
Elias da Cunha Filho, Júlio Cézar [UNESP]
Rocha, José Celso [UNESP]
Fernández Núñez, Eutimio Gustavo [UNESP]
dc.subject.por.fl_str_mv Beer and brewing process
Chemometrics
Quality control
Statistics
UV/Visible spectroscopy
topic Beer and brewing process
Chemometrics
Quality control
Statistics
UV/Visible spectroscopy
description This work aimed to determinate eight beer properties using UV-Vis spectra in combination with principal component regression (PCR) or artificial neural network (ANN) models. A statistical experimental design was performed to generate the calibration data. First, principal component analysis (PCA) was applied to the original spectral data, and the scores in significant PCs were utilized to calibrate both models. PCR showed poor correlation for beer parameters (R2 < 0.61). The ANNs showed satisfactory correlations (R2 = 0.74–0.92) and low relative error considering a variable range (Er < 9%) for most of the beer-quality attributes, but vicinal diketones (R2 = 0.56, Er = 16.69%). Once implemented, this method would be fast and low cost.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-29
2018-12-11T17:16:58Z
2018-12-11T17:16:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/10942912.2017.1352602
International Journal of Food Properties, v. 20, p. 1686-1699.
1532-2386
1094-2912
http://hdl.handle.net/11449/175665
10.1080/10942912.2017.1352602
2-s2.0-85038614175
2-s2.0-85038614175.pdf
url http://dx.doi.org/10.1080/10942912.2017.1352602
http://hdl.handle.net/11449/175665
identifier_str_mv International Journal of Food Properties, v. 20, p. 1686-1699.
1532-2386
1094-2912
10.1080/10942912.2017.1352602
2-s2.0-85038614175
2-s2.0-85038614175.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Food Properties
0,513
0,513
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1686-1699
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128802104016896