Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina

Detalhes bibliográficos
Autor(a) principal: Souza, Mariany Kerriany Gonçalves de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UNOESTE
Texto Completo: http://bdtd.unoeste.br:8080/jspui/handle/jspui/1528
Resumo: A proteção das águas é um problema de interesse de diversos órgãos ambientais dentro do Pontal do Paranapanema. Neste estudo foi realizado uma abordagem de classificação e segmentação de rios em imagens de alta resolução espacial baseada em algoritmos rasos de aprendizagem de máquina. Composta por quatro etapas: (1) vetorização de rios em imagens de alta resolução espacial; (2) segmentação das imagens e treinamento dos algoritmos rasos de aprendizagem de máquina; (3) teste dos algoritmos na segmentação dos rios nas imagens RGB; (4) descrição qualitativa dos cursos d’água. A área de estudo de caso é a região pertencente à 22ª Unidade de Gerenciamento de Recursos Hídricos do Pontal do Paranapanema (UGRHI-22), na qual estão inseridos 26 municípios do oeste do estado de São Paulo. As imagens utilizadas são ortofotografias RGB de alta resolução espacial (1 m) provenientes do projeto Mapeia-SP. Para compor os dados de treinamento e teste, organizou-se um banco de dados geográficos no SIG ESRI ArcGIS Pro 2.8. Na sequência, fizemos a classificação de interesse (rios x não rio) nessas imagens. Um total de 04 ortofotos compuseram o estudo de caso inicial. Verificou-se o desempenho dos algoritmos Random Forest (RF), com diferentes métricas de avaliação, e o Support Vector Machine (SVM), ambos aplicados sobre as imagens RGB segmentadas pelo método Mean Shift. Os resultados de desempenho, analisados a partir das métricas de validação da acurácia (90%), como F1-Score (91%), Recall (99%) e Precision (85%), demonstraram que o SVM apresenta os melhores valores. Obteve-se métricas acima de 90% nos dados de teste em termos de F1-measure. Esses resultados foram utilizados em somente 04 imagens, no qual demostram a capacidade dos algoritmos rasos, como o SVM, em realizar o mapeamento de feições em imagens com alto nível de detalhe. Os produtos cartográficos que se pode gerar a partir do emprego dessas metodologias pautadas em inteligência artificial podem apoiar diversos estudos ao que tange às tarefas de planejamento e monitoramento ambiental e análise de impacto ambiental relacionada à proteção dos cursos d’água.
id UOES_7267656e45ba3478b696ab4d3de06c91
oai_identifier_str oai:bdtd.unoeste.br:jspui/1528
network_acronym_str UOES
network_name_str Biblioteca Digital de Teses e Dissertações da UNOESTE
repository_id_str
spelling Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquinaRiver mapping in high spatial resolution images using machine learning algorithmsSupport Vector MachineRandom ForestMachine LearningAprendizagem de máquinaOUTROS::CIENCIASA proteção das águas é um problema de interesse de diversos órgãos ambientais dentro do Pontal do Paranapanema. Neste estudo foi realizado uma abordagem de classificação e segmentação de rios em imagens de alta resolução espacial baseada em algoritmos rasos de aprendizagem de máquina. Composta por quatro etapas: (1) vetorização de rios em imagens de alta resolução espacial; (2) segmentação das imagens e treinamento dos algoritmos rasos de aprendizagem de máquina; (3) teste dos algoritmos na segmentação dos rios nas imagens RGB; (4) descrição qualitativa dos cursos d’água. A área de estudo de caso é a região pertencente à 22ª Unidade de Gerenciamento de Recursos Hídricos do Pontal do Paranapanema (UGRHI-22), na qual estão inseridos 26 municípios do oeste do estado de São Paulo. As imagens utilizadas são ortofotografias RGB de alta resolução espacial (1 m) provenientes do projeto Mapeia-SP. Para compor os dados de treinamento e teste, organizou-se um banco de dados geográficos no SIG ESRI ArcGIS Pro 2.8. Na sequência, fizemos a classificação de interesse (rios x não rio) nessas imagens. Um total de 04 ortofotos compuseram o estudo de caso inicial. Verificou-se o desempenho dos algoritmos Random Forest (RF), com diferentes métricas de avaliação, e o Support Vector Machine (SVM), ambos aplicados sobre as imagens RGB segmentadas pelo método Mean Shift. Os resultados de desempenho, analisados a partir das métricas de validação da acurácia (90%), como F1-Score (91%), Recall (99%) e Precision (85%), demonstraram que o SVM apresenta os melhores valores. Obteve-se métricas acima de 90% nos dados de teste em termos de F1-measure. Esses resultados foram utilizados em somente 04 imagens, no qual demostram a capacidade dos algoritmos rasos, como o SVM, em realizar o mapeamento de feições em imagens com alto nível de detalhe. Os produtos cartográficos que se pode gerar a partir do emprego dessas metodologias pautadas em inteligência artificial podem apoiar diversos estudos ao que tange às tarefas de planejamento e monitoramento ambiental e análise de impacto ambiental relacionada à proteção dos cursos d’água.Water protection is a problem of interest to several environmental agencies within Pontal do Paranapanema. In this study, an approach for classifying and segmenting rivers in high spatial resolution images based on shallow machine learning algorithms was carried out. Composed of four steps: (1) vectorization of rivers in high spatial resolution images; (2) image segmentation and training of shallow machine learning algorithms; (3) testing the algorithms in the segmentation of the rivers in the RGB images; (4) qualitative description of water courses. The case study area is the region belonging to the 22nd Water Resources Management Unit of Pontal do Paranapanema (UGRHI-22), which includes 26 municipalities in the west of the state of São Paulo. The images used are RGB orthophotographs of high spatial resolution (1 m) from the Mapeia-SP project. To compose the training and test data, a geographic database was organized in GIS ESRI ArcGIS Pro 2.8. Next, we made the classification of interest (rivers x non-river) in these images. A total of 04 orthophotos composed the initial case study. The performance of the Random Forest algorithms was verified, with different evaluation metrics, and the Support Vector Machine (SVM), both applied on RGB images segmented by the Mean Shift method. The performance results, analyzed from the validation metrics of accuracy (90%), such as F1-Score (91%), Recall (99%) and Precision (85%), showed that the SVM presents the best values. Metrics above 90% were obtained in the test data in terms of F1-measure. The Random Forest (RF) input parameters were also tested and showed that the highest regularization parameter obtained a result of 90%. These results were obtained from only 04 images, which demonstrate the ability of shallow algorithms, such as SVM, to perform the mapping and segmentation of rivers in images with a high level of detail. The cartographic products that can be generated from the use of these methodologies based on artificial intelligence can support several studies regarding environmental planning and monitoring tasks and environmental impact analysis related to the protection of water courses.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESUniversidade do Oeste PaulistaMestrado em Meio Ambiente e Desenvolvimento RegionalBrasilUNOESTEMestrado em Meio Ambiente e Desenvolvimento RegionalRamos, Ana Paula Marqueshttps://orcid.org/0000-0001-6633-2903http://lattes.cnpq.br/9006947238035954Pereira, Danillo R.http://lattes.cnpq.br/0122307432250869Marcato Junior, Joséhttps://orcid.org/0000-0002-9096-6866http://lattes.cnpq.br/1054922336409334Alves, Marcelo Rodrigohttp://lattes.cnpq.br/8257691552745291Souza, Mariany Kerriany Gonçalves de2023-11-06T21:13:56Z2022-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSOUZA, M. K. G. de. Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina. 2022. 30 f. Dissertação (Mestrado em Meio Ambiente e Desenvolvimento Regional)- Universidade do Oeste Paulista, Presidente Prudente, 2022.http://bdtd.unoeste.br:8080/jspui/handle/jspui/1528porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UNOESTEinstname:Universidade do Oeste Paulista (UNOESTE)instacron:UNOESTE2023-11-07T04:01:39Zoai:bdtd.unoeste.br:jspui/1528Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.unoeste.br:8080/jspui/PUBhttp://bdtd.unoeste.br:8080/oai/requestbdtd@unoeste.bropendoar:2023-11-07T04:01:39Biblioteca Digital de Teses e Dissertações da UNOESTE - Universidade do Oeste Paulista (UNOESTE)false
dc.title.none.fl_str_mv Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina
River mapping in high spatial resolution images using machine learning algorithms
title Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina
spellingShingle Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina
Souza, Mariany Kerriany Gonçalves de
Support Vector Machine
Random Forest
Machine Learning
Aprendizagem de máquina
OUTROS::CIENCIAS
title_short Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina
title_full Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina
title_fullStr Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina
title_full_unstemmed Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina
title_sort Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina
author Souza, Mariany Kerriany Gonçalves de
author_facet Souza, Mariany Kerriany Gonçalves de
author_role author
dc.contributor.none.fl_str_mv Ramos, Ana Paula Marques
https://orcid.org/0000-0001-6633-2903
http://lattes.cnpq.br/9006947238035954
Pereira, Danillo R.
http://lattes.cnpq.br/0122307432250869
Marcato Junior, José
https://orcid.org/0000-0002-9096-6866
http://lattes.cnpq.br/1054922336409334
Alves, Marcelo Rodrigo
http://lattes.cnpq.br/8257691552745291
dc.contributor.author.fl_str_mv Souza, Mariany Kerriany Gonçalves de
dc.subject.por.fl_str_mv Support Vector Machine
Random Forest
Machine Learning
Aprendizagem de máquina
OUTROS::CIENCIAS
topic Support Vector Machine
Random Forest
Machine Learning
Aprendizagem de máquina
OUTROS::CIENCIAS
description A proteção das águas é um problema de interesse de diversos órgãos ambientais dentro do Pontal do Paranapanema. Neste estudo foi realizado uma abordagem de classificação e segmentação de rios em imagens de alta resolução espacial baseada em algoritmos rasos de aprendizagem de máquina. Composta por quatro etapas: (1) vetorização de rios em imagens de alta resolução espacial; (2) segmentação das imagens e treinamento dos algoritmos rasos de aprendizagem de máquina; (3) teste dos algoritmos na segmentação dos rios nas imagens RGB; (4) descrição qualitativa dos cursos d’água. A área de estudo de caso é a região pertencente à 22ª Unidade de Gerenciamento de Recursos Hídricos do Pontal do Paranapanema (UGRHI-22), na qual estão inseridos 26 municípios do oeste do estado de São Paulo. As imagens utilizadas são ortofotografias RGB de alta resolução espacial (1 m) provenientes do projeto Mapeia-SP. Para compor os dados de treinamento e teste, organizou-se um banco de dados geográficos no SIG ESRI ArcGIS Pro 2.8. Na sequência, fizemos a classificação de interesse (rios x não rio) nessas imagens. Um total de 04 ortofotos compuseram o estudo de caso inicial. Verificou-se o desempenho dos algoritmos Random Forest (RF), com diferentes métricas de avaliação, e o Support Vector Machine (SVM), ambos aplicados sobre as imagens RGB segmentadas pelo método Mean Shift. Os resultados de desempenho, analisados a partir das métricas de validação da acurácia (90%), como F1-Score (91%), Recall (99%) e Precision (85%), demonstraram que o SVM apresenta os melhores valores. Obteve-se métricas acima de 90% nos dados de teste em termos de F1-measure. Esses resultados foram utilizados em somente 04 imagens, no qual demostram a capacidade dos algoritmos rasos, como o SVM, em realizar o mapeamento de feições em imagens com alto nível de detalhe. Os produtos cartográficos que se pode gerar a partir do emprego dessas metodologias pautadas em inteligência artificial podem apoiar diversos estudos ao que tange às tarefas de planejamento e monitoramento ambiental e análise de impacto ambiental relacionada à proteção dos cursos d’água.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-23
2023-11-06T21:13:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SOUZA, M. K. G. de. Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina. 2022. 30 f. Dissertação (Mestrado em Meio Ambiente e Desenvolvimento Regional)- Universidade do Oeste Paulista, Presidente Prudente, 2022.
http://bdtd.unoeste.br:8080/jspui/handle/jspui/1528
identifier_str_mv SOUZA, M. K. G. de. Mapeamento de rios em imagens de alta resolução espacial usando algoritmos de aprendizagem de máquina. 2022. 30 f. Dissertação (Mestrado em Meio Ambiente e Desenvolvimento Regional)- Universidade do Oeste Paulista, Presidente Prudente, 2022.
url http://bdtd.unoeste.br:8080/jspui/handle/jspui/1528
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Oeste Paulista
Mestrado em Meio Ambiente e Desenvolvimento Regional
Brasil
UNOESTE
Mestrado em Meio Ambiente e Desenvolvimento Regional
publisher.none.fl_str_mv Universidade do Oeste Paulista
Mestrado em Meio Ambiente e Desenvolvimento Regional
Brasil
UNOESTE
Mestrado em Meio Ambiente e Desenvolvimento Regional
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNOESTE
instname:Universidade do Oeste Paulista (UNOESTE)
instacron:UNOESTE
instname_str Universidade do Oeste Paulista (UNOESTE)
instacron_str UNOESTE
institution UNOESTE
reponame_str Biblioteca Digital de Teses e Dissertações da UNOESTE
collection Biblioteca Digital de Teses e Dissertações da UNOESTE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNOESTE - Universidade do Oeste Paulista (UNOESTE)
repository.mail.fl_str_mv bdtd@unoeste.br
_version_ 1811100156599205888