Predição do mercado de ações usando Hidden Markov Model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UPF |
Texto Completo: | http://repositorio.upf.br/handle/riupf/1592 |
Resumo: | Os mercados de ações são sistemas complexos devido a sua nãoestacionariedade, pois os parâmetros estão sempre em constantes mudanças, como condições econômicas e mudanças na política de empresas. Há várias pesquisas para a predição dos valores de ações com técnicas de inteligência artificial e aprendizagem de máquina, como redes neurais artificiais, máquina de vetores de suporte, lógica difusa, reconhecimento de padrões, onde, neste último, o Hidden Markov Model, foco deste trabalho, se encaixa. Por ser um modelo estocástico, onde os eventos são aleatórios, os resultados mostram que o HMM pode ser bem empregado na predição do comportamento das ações com base em seu desempenho histórico. |
id |
UPF_74d3274360363f7508953e43f32a0b06 |
---|---|
oai_identifier_str |
oai:localhost:riupf/1592 |
network_acronym_str |
UPF |
network_name_str |
Repositório Institucional da UPF |
repository_id_str |
1610 |
spelling |
2019-02-18T13:03:42Z2019-02-182019-02-18T13:03:42Z2018-12-03KUINCHTNER, Daniela. Predição do mercado de ações usando Hidden Markov Model. 2018. [20] f. Artigo de conclusão de curso (Bacharel em Ciência da Computação). Curso de Ciência da Computação. Universidade de Passo Fundo, Passo Fundo, RS, 2018.http://repositorio.upf.br/handle/riupf/1592Os mercados de ações são sistemas complexos devido a sua nãoestacionariedade, pois os parâmetros estão sempre em constantes mudanças, como condições econômicas e mudanças na política de empresas. Há várias pesquisas para a predição dos valores de ações com técnicas de inteligência artificial e aprendizagem de máquina, como redes neurais artificiais, máquina de vetores de suporte, lógica difusa, reconhecimento de padrões, onde, neste último, o Hidden Markov Model, foco deste trabalho, se encaixa. Por ser um modelo estocástico, onde os eventos são aleatórios, os resultados mostram que o HMM pode ser bem empregado na predição do comportamento das ações com base em seu desempenho histórico.Stock markets are complex systems due its non-stationarity, the parameters are always in constant changes like economic conditions and changes in the politics of companies. There are several researches in predicting the stocks with Artificial Intelligence and Machine Learning techniques, such as Artificial Neural Networks, Support Vector Machine, Fuzzy Logic, Pattern Recognition, which, in the latter, the Hidden Markov Model, focus of this paper, fits. Because it is a stochastic model, where events are random, the results show that HMM can be well used in predicting the behavior of stocks based on their historical performance.Submitted by Fernanda Ferronato (fernandaf@upf.br) on 2019-02-18T13:03:42Z No. of bitstreams: 1 PF2018Daniela Kuinchtner.pdf: 486406 bytes, checksum: 4bbfbdd272dbeda28eb57b3d182d18b3 (MD5)Made available in DSpace on 2019-02-18T13:03:42Z (GMT). No. of bitstreams: 1 PF2018Daniela Kuinchtner.pdf: 486406 bytes, checksum: 4bbfbdd272dbeda28eb57b3d182d18b3 (MD5) Previous issue date: 2018-12-03porUniversidade de Passo FundoUPFBrasilInstituto de Ciências Exatas e Geociências - ICEGComputaçãoMercado financeiroAçõesInteligência artificialHidden Markov ModelPredição do mercado de ações usando Hidden Markov Modelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisMadalozzo, Guilherme AfonsoKuinchtner, Danielainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UPFinstname:Universidade de Passo Fundo (UPF)instacron:UPFLICENSElicense.txtlicense.txttext/plain; charset=utf-81855http://localhost:8080/bitstream/riupf/1592/2/license.txtf4e65a66a9c78bf84e99c734afe49b4cMD52ORIGINALPF2018Daniela Kuinchtner.pdfPF2018Daniela Kuinchtner.pdfArtigo de conclusão de curso de Daniela Kuinchtnerapplication/pdf486406http://localhost:8080/bitstream/riupf/1592/1/PF2018Daniela%20Kuinchtner.pdf4bbfbdd272dbeda28eb57b3d182d18b3MD51riupf/15922019-02-18 10:03:42.82oai:localhost:riupf/1592TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gRGVwb3NpdGEgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIApPUkdBTklTTU8sIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyAKRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gRGVwb3NpdGEgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIGRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgcHVibGljYcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPRIhttp://repositorio.upf.br/oai/requestopendoar:16102019-02-18T13:03:42Repositório Institucional da UPF - Universidade de Passo Fundo (UPF)false |
dc.title.pt_BR.fl_str_mv |
Predição do mercado de ações usando Hidden Markov Model |
title |
Predição do mercado de ações usando Hidden Markov Model |
spellingShingle |
Predição do mercado de ações usando Hidden Markov Model Kuinchtner, Daniela Computação Mercado financeiro Ações Inteligência artificial Hidden Markov Model |
title_short |
Predição do mercado de ações usando Hidden Markov Model |
title_full |
Predição do mercado de ações usando Hidden Markov Model |
title_fullStr |
Predição do mercado de ações usando Hidden Markov Model |
title_full_unstemmed |
Predição do mercado de ações usando Hidden Markov Model |
title_sort |
Predição do mercado de ações usando Hidden Markov Model |
author |
Kuinchtner, Daniela |
author_facet |
Kuinchtner, Daniela |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Madalozzo, Guilherme Afonso |
dc.contributor.author.fl_str_mv |
Kuinchtner, Daniela |
contributor_str_mv |
Madalozzo, Guilherme Afonso |
dc.subject.por.fl_str_mv |
Computação Mercado financeiro Ações Inteligência artificial Hidden Markov Model |
topic |
Computação Mercado financeiro Ações Inteligência artificial Hidden Markov Model |
description |
Os mercados de ações são sistemas complexos devido a sua nãoestacionariedade, pois os parâmetros estão sempre em constantes mudanças, como condições econômicas e mudanças na política de empresas. Há várias pesquisas para a predição dos valores de ações com técnicas de inteligência artificial e aprendizagem de máquina, como redes neurais artificiais, máquina de vetores de suporte, lógica difusa, reconhecimento de padrões, onde, neste último, o Hidden Markov Model, foco deste trabalho, se encaixa. Por ser um modelo estocástico, onde os eventos são aleatórios, os resultados mostram que o HMM pode ser bem empregado na predição do comportamento das ações com base em seu desempenho histórico. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-12-03 |
dc.date.accessioned.fl_str_mv |
2019-02-18T13:03:42Z |
dc.date.available.fl_str_mv |
2019-02-18 2019-02-18T13:03:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
KUINCHTNER, Daniela. Predição do mercado de ações usando Hidden Markov Model. 2018. [20] f. Artigo de conclusão de curso (Bacharel em Ciência da Computação). Curso de Ciência da Computação. Universidade de Passo Fundo, Passo Fundo, RS, 2018. |
dc.identifier.uri.fl_str_mv |
http://repositorio.upf.br/handle/riupf/1592 |
identifier_str_mv |
KUINCHTNER, Daniela. Predição do mercado de ações usando Hidden Markov Model. 2018. [20] f. Artigo de conclusão de curso (Bacharel em Ciência da Computação). Curso de Ciência da Computação. Universidade de Passo Fundo, Passo Fundo, RS, 2018. |
url |
http://repositorio.upf.br/handle/riupf/1592 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade de Passo Fundo |
dc.publisher.initials.fl_str_mv |
UPF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Ciências Exatas e Geociências - ICEG |
publisher.none.fl_str_mv |
Universidade de Passo Fundo |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UPF instname:Universidade de Passo Fundo (UPF) instacron:UPF |
instname_str |
Universidade de Passo Fundo (UPF) |
instacron_str |
UPF |
institution |
UPF |
reponame_str |
Repositório Institucional da UPF |
collection |
Repositório Institucional da UPF |
bitstream.url.fl_str_mv |
http://localhost:8080/bitstream/riupf/1592/2/license.txt http://localhost:8080/bitstream/riupf/1592/1/PF2018Daniela%20Kuinchtner.pdf |
bitstream.checksum.fl_str_mv |
f4e65a66a9c78bf84e99c734afe49b4c 4bbfbdd272dbeda28eb57b3d182d18b3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UPF - Universidade de Passo Fundo (UPF) |
repository.mail.fl_str_mv |
|
_version_ |
1814813988233412608 |