Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do Mackenzie |
Texto Completo: | https://dspace.mackenzie.br/handle/10899/28438 |
Resumo: | No presente trabalho, foram produzidos nanocompósitos por meio da incorporação de nanoestruturas de carbono ao poliuretano termoplástico (TPU), de modo a obter nanocompósitos com propriedades elétricas superiores (referentes a permissividade e a condutividade elétrica) e melhoria no efeito de memória de forma (SME), visando ao desenvolvimento de compósitos com memória de forma (SMPCs) eletroativos. Os TPUs são polímeros versáteis amplamente estudados pelos promissores SMEs apresentados. Estes são copolímeros em multiblocos, cuja morfologia é altamente dependente dos parâmetros termodinâmicos. Sendo assim, de modo a compreender a morfologia do TPU utilizado, um primeiro estudo foi desenvolvido em que o material passou por tratamento térmico a 110 ºC em diferentes tempos: 0, 8, 16 e 24 horas. Os resultados apontaram que a separação de fases entre os segmentos rígido e elastomérico, que compõem a estrutura do TPU, aumentou os valores de razão de recuperação da forma (Rr) em virtude da formação de novos domínios rígidos. Por outro lado, a razão de fixação da forma (Rf) apresentou uma diminuição na medida em que o material foi submetido a tempos maiores de tratamento térmico, atribuída ao aumento na rigidez do material. Com o objetivo de melhorar as propriedades elétricas do TPU e os SMEs, foram desenvolvidos SMPCs contendo 0,1% em massa de grafite (Gr), nanoplaquetas de grafeno (GNP) e óxido de grafeno multicamadas (mGO), via mistura por solução. Dos materiais obtidos, os SMPCs apresentaram melhoria no SME, quanto ao aumento nos valores de deformação máxima (εload) e Rr, principalmente após o tratamento térmico por 24 horas; e menor variação nos valores de Rf antes e após o tratamento térmico, quando comparados ao TPU puro. Nas propriedades elétricas, foi verificado um aumento em condutividade elétrica (σAC) para os SMPCs de nanoplaquetas de grafeno (TPU+GNP) e grafite (TPU+Gr), enquanto todos os materiais apresentaram aumentos em σAC após as 24 horas. Por fim, SMPCs com maiores concentrações (até 1,5% em massa) de GNP, nanotubos de carbono (CNT) e seus híbridos foram desenvolvidos, de modo a atingir a percolação elétrica do material. O limiar de percolação elétrica foi verificado para os SMPCs contendo 0,25% em massa de CNTs; e o retorno parcial da forma sob estímulo elétrico foi observado para o SMPC híbrido contendo 0,5% de CNT e 1,0% de GNP, valor este inferior ao reportado na literatura (2% em massa). |
id |
UPM_4cd89d23070ac8f415c64d029bf0c01e |
---|---|
oai_identifier_str |
oai:dspace.mackenzie.br:10899/28438 |
network_acronym_str |
UPM |
network_name_str |
Biblioteca Digital de Teses e Dissertações do Mackenzie |
repository_id_str |
10277 |
spelling |
Paiva, Lucilene Betega dehttp://lattes.cnpq.br/9013928147997007http://lattes.cnpq.br/2704277390841473Valim, Fernanda Cabrera FloresAndrade, Ricardo Jorge Espanholhttp://lattes.cnpq.br/12573151473672242021-12-15T19:31:42Z2021-12-15T19:31:42Z2021-02-18No presente trabalho, foram produzidos nanocompósitos por meio da incorporação de nanoestruturas de carbono ao poliuretano termoplástico (TPU), de modo a obter nanocompósitos com propriedades elétricas superiores (referentes a permissividade e a condutividade elétrica) e melhoria no efeito de memória de forma (SME), visando ao desenvolvimento de compósitos com memória de forma (SMPCs) eletroativos. Os TPUs são polímeros versáteis amplamente estudados pelos promissores SMEs apresentados. Estes são copolímeros em multiblocos, cuja morfologia é altamente dependente dos parâmetros termodinâmicos. Sendo assim, de modo a compreender a morfologia do TPU utilizado, um primeiro estudo foi desenvolvido em que o material passou por tratamento térmico a 110 ºC em diferentes tempos: 0, 8, 16 e 24 horas. Os resultados apontaram que a separação de fases entre os segmentos rígido e elastomérico, que compõem a estrutura do TPU, aumentou os valores de razão de recuperação da forma (Rr) em virtude da formação de novos domínios rígidos. Por outro lado, a razão de fixação da forma (Rf) apresentou uma diminuição na medida em que o material foi submetido a tempos maiores de tratamento térmico, atribuída ao aumento na rigidez do material. Com o objetivo de melhorar as propriedades elétricas do TPU e os SMEs, foram desenvolvidos SMPCs contendo 0,1% em massa de grafite (Gr), nanoplaquetas de grafeno (GNP) e óxido de grafeno multicamadas (mGO), via mistura por solução. Dos materiais obtidos, os SMPCs apresentaram melhoria no SME, quanto ao aumento nos valores de deformação máxima (εload) e Rr, principalmente após o tratamento térmico por 24 horas; e menor variação nos valores de Rf antes e após o tratamento térmico, quando comparados ao TPU puro. Nas propriedades elétricas, foi verificado um aumento em condutividade elétrica (σAC) para os SMPCs de nanoplaquetas de grafeno (TPU+GNP) e grafite (TPU+Gr), enquanto todos os materiais apresentaram aumentos em σAC após as 24 horas. Por fim, SMPCs com maiores concentrações (até 1,5% em massa) de GNP, nanotubos de carbono (CNT) e seus híbridos foram desenvolvidos, de modo a atingir a percolação elétrica do material. O limiar de percolação elétrica foi verificado para os SMPCs contendo 0,25% em massa de CNTs; e o retorno parcial da forma sob estímulo elétrico foi observado para o SMPC híbrido contendo 0,5% de CNT e 1,0% de GNP, valor este inferior ao reportado na literatura (2% em massa).In the present work, carbon-based nanostructures were incorporated in thermoplastic polyurethane (TPU) to obtain nanocomposites with better electrical properties (regarding electrical conductivity and permittivity) and shape memory effect (SME), aiming at the development of electroactive shape memory composites (SMPCs). TPUs are versatile polymers widely studied by their promising SMEs. These are multiblock copolymers whose morphology is highly dependent on thermodynamic parameters. Therefore, in order to understand the morphology of the TPU used, a firstly a study of the influence of annealing at 110 ºC for 0, 8, 16 and 24 hours was developed. The results showed that the phase separation between the hard and the soft segments of TPU increased the shape recovery ratio (Rr) values, due the formation of new hard domains; on the other hand, the shape fixity ratio (Rf) decreased as the material underwent longer annealing times, regarding to the increase in material stiffness. In order to enhance the electrical properties of TPU and SMEs, nanocomposites containing 0.1 wt.% of graphite (Gr), graphene nanoplatelets (GNP) and multilayers graphene oxide (mGO) were developed by casting method. From the obtained materials, the SMPCs presented enhancement on the SME, regarding to the maximum strain (εload) and Rr, especially after 24 hours of annealing at 110 ºC; and the variation between Rf values before and after annealing decrease in comparison with the neat polymer. On the electrical properties, an increase on electrical conductivity (σAC) for graphene nanoplatelets (TPU+GNP) and graphite (TPU+Gr) nanocomposites was observed, while all materials presented an improvement on σAC after 24 hours of annealing. Finally, nanocomposites with higher contents (up to 1.5 wt.%) of GNP, carbon nanotubes (CNT) and their hybrids were developed in order to achieve the electrical percolation of the material. The electrical percolation threshold was verified for nanocomposites containing 0.25 wt.% of carbon nanotubes; and the partial return of the shape under an electrical stimulus was observed for the hybrid nanocomposite containing 0.5 wt.% of CNT and 1.0 wt.% of GNP, with a total concentration lower from the reported literature.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfVALIM, Fernanda Cabrera Flores. Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma. 2021. 146 f. Tese( Engenharia de Materiais e Nanotecnologia) - Universidade Presbiteriana Mackenzie, São Paulo.https://dspace.mackenzie.br/handle/10899/28438thermoplastic polyurethaneshape memory polymersgraphenecarbon nanotubeselectroactive shape memory compositesporUniversidade Presbiteriana Mackenziehttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesspoliuretano termoplásticopolímeros com memória de formagrafenonanotubos de carbonocompósitos com memória de forma eletroativosCNPQ::ENGENHARIASNanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de formainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Biblioteca Digital de Teses e Dissertações do Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIECastro e Silva, Cecilia de Carvalhohttp://lattes.cnpq.br/6889517148629242Scuracchio, Carlos HenriqueMaia, João Manuel Luis LopesCarastan, Danilo JustinoBrasilEscola de Engenharia Mackenzie (EE)UPMEngenharia de Materiais e NanotecnologiaORIGINALFERNANDA CABRERA FLORES VALIM.pdfFernanda Cabrera Flores Valimapplication/pdf9263397https://dspace.mackenzie.br/bitstreams/bf7a8340-497e-4325-be20-3a9c75fe7832/download9c440ac0d848cc737809e733d33e143bMD51CC-LICENSElicense_urlapplication/octet-stream49https://dspace.mackenzie.br/bitstreams/9391b2b5-a2ea-4fbb-ab7f-a52a9aa15a3e/download4afdbb8c545fd630ea7db775da747b2fMD52license_textapplication/octet-stream0https://dspace.mackenzie.br/bitstreams/cc401f7a-de3f-4543-961d-ac43611bc7dd/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdfapplication/octet-stream0https://dspace.mackenzie.br/bitstreams/c8694df9-978e-43ab-9240-08be4eb0476c/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txttext/plain2108https://dspace.mackenzie.br/bitstreams/9f762ad9-21e1-492c-80f4-ba1ebeedb5e7/download1ca4f25d161e955cf4b7a4aa65b8e96eMD55TEXTFERNANDA CABRERA FLORES VALIM.pdf.txtFERNANDA CABRERA FLORES VALIM.pdf.txtExtracted texttext/plain262145https://dspace.mackenzie.br/bitstreams/74d3f7d0-89cc-4b17-afd3-9b9f0472ffb7/download20c96b74bde3be92f30846d440028d5bMD58THUMBNAILFERNANDA CABRERA FLORES VALIM.pdf.jpgFERNANDA CABRERA FLORES VALIM.pdf.jpgGenerated Thumbnailimage/jpeg1181https://dspace.mackenzie.br/bitstreams/f627ab27-32c0-4731-81e2-2e01bf201350/downloade542c4763d2c9d8aa33c82a0d120e2f9MD5910899/284382022-03-14 21:12:06.825http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertooai:dspace.mackenzie.br:10899/28438https://dspace.mackenzie.brBiblioteca Digital de Teses e Dissertaçõeshttp://tede.mackenzie.br/jspui/PRIhttps://adelpha-api.mackenzie.br/server/oai/repositorio@mackenzie.br||paola.damato@mackenzie.bropendoar:102772022-03-14T21:12:06Biblioteca Digital de Teses e Dissertações do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBQcmVzYml0ZXJpYW5hIE1hY2tlbnppZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVbml2ZXJzaWRhZGUgUHJlc2JpdGVyaWFuYSBNYWNrZW56aWUgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBVbml2ZXJzaWRhZGUgUHJlc2JpdGVyaWFuYSBNYWNrZW56aWUgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVU5JVkVSU0lEQURFIFBSRVNCSVRFUklBTkEgTUFDS0VOWklFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma |
title |
Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma |
spellingShingle |
Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma Valim, Fernanda Cabrera Flores poliuretano termoplástico polímeros com memória de forma grafeno nanotubos de carbono compósitos com memória de forma eletroativos CNPQ::ENGENHARIAS |
title_short |
Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma |
title_full |
Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma |
title_fullStr |
Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma |
title_full_unstemmed |
Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma |
title_sort |
Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma |
author |
Valim, Fernanda Cabrera Flores |
author_facet |
Valim, Fernanda Cabrera Flores |
author_role |
author |
dc.contributor.advisor-co1.fl_str_mv |
Paiva, Lucilene Betega de |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/9013928147997007 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2704277390841473 |
dc.contributor.author.fl_str_mv |
Valim, Fernanda Cabrera Flores |
dc.contributor.advisor1.fl_str_mv |
Andrade, Ricardo Jorge Espanhol |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1257315147367224 |
contributor_str_mv |
Paiva, Lucilene Betega de Andrade, Ricardo Jorge Espanhol |
dc.subject.por.fl_str_mv |
poliuretano termoplástico polímeros com memória de forma grafeno nanotubos de carbono compósitos com memória de forma eletroativos |
topic |
poliuretano termoplástico polímeros com memória de forma grafeno nanotubos de carbono compósitos com memória de forma eletroativos CNPQ::ENGENHARIAS |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS |
description |
No presente trabalho, foram produzidos nanocompósitos por meio da incorporação de nanoestruturas de carbono ao poliuretano termoplástico (TPU), de modo a obter nanocompósitos com propriedades elétricas superiores (referentes a permissividade e a condutividade elétrica) e melhoria no efeito de memória de forma (SME), visando ao desenvolvimento de compósitos com memória de forma (SMPCs) eletroativos. Os TPUs são polímeros versáteis amplamente estudados pelos promissores SMEs apresentados. Estes são copolímeros em multiblocos, cuja morfologia é altamente dependente dos parâmetros termodinâmicos. Sendo assim, de modo a compreender a morfologia do TPU utilizado, um primeiro estudo foi desenvolvido em que o material passou por tratamento térmico a 110 ºC em diferentes tempos: 0, 8, 16 e 24 horas. Os resultados apontaram que a separação de fases entre os segmentos rígido e elastomérico, que compõem a estrutura do TPU, aumentou os valores de razão de recuperação da forma (Rr) em virtude da formação de novos domínios rígidos. Por outro lado, a razão de fixação da forma (Rf) apresentou uma diminuição na medida em que o material foi submetido a tempos maiores de tratamento térmico, atribuída ao aumento na rigidez do material. Com o objetivo de melhorar as propriedades elétricas do TPU e os SMEs, foram desenvolvidos SMPCs contendo 0,1% em massa de grafite (Gr), nanoplaquetas de grafeno (GNP) e óxido de grafeno multicamadas (mGO), via mistura por solução. Dos materiais obtidos, os SMPCs apresentaram melhoria no SME, quanto ao aumento nos valores de deformação máxima (εload) e Rr, principalmente após o tratamento térmico por 24 horas; e menor variação nos valores de Rf antes e após o tratamento térmico, quando comparados ao TPU puro. Nas propriedades elétricas, foi verificado um aumento em condutividade elétrica (σAC) para os SMPCs de nanoplaquetas de grafeno (TPU+GNP) e grafite (TPU+Gr), enquanto todos os materiais apresentaram aumentos em σAC após as 24 horas. Por fim, SMPCs com maiores concentrações (até 1,5% em massa) de GNP, nanotubos de carbono (CNT) e seus híbridos foram desenvolvidos, de modo a atingir a percolação elétrica do material. O limiar de percolação elétrica foi verificado para os SMPCs contendo 0,25% em massa de CNTs; e o retorno parcial da forma sob estímulo elétrico foi observado para o SMPC híbrido contendo 0,5% de CNT e 1,0% de GNP, valor este inferior ao reportado na literatura (2% em massa). |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-12-15T19:31:42Z |
dc.date.available.fl_str_mv |
2021-12-15T19:31:42Z |
dc.date.issued.fl_str_mv |
2021-02-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
VALIM, Fernanda Cabrera Flores. Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma. 2021. 146 f. Tese( Engenharia de Materiais e Nanotecnologia) - Universidade Presbiteriana Mackenzie, São Paulo. |
dc.identifier.uri.fl_str_mv |
https://dspace.mackenzie.br/handle/10899/28438 |
identifier_str_mv |
VALIM, Fernanda Cabrera Flores. Nanocompósitos de poliuretano termoplástico com estruturas de carbono: estudo das propriedades elétricas e do efeito de memória de forma. 2021. 146 f. Tese( Engenharia de Materiais e Nanotecnologia) - Universidade Presbiteriana Mackenzie, São Paulo. |
url |
https://dspace.mackenzie.br/handle/10899/28438 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Presbiteriana Mackenzie |
publisher.none.fl_str_mv |
Universidade Presbiteriana Mackenzie |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do Mackenzie instname:Universidade Presbiteriana Mackenzie (MACKENZIE) instacron:MACKENZIE |
instname_str |
Universidade Presbiteriana Mackenzie (MACKENZIE) |
instacron_str |
MACKENZIE |
institution |
MACKENZIE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do Mackenzie |
collection |
Biblioteca Digital de Teses e Dissertações do Mackenzie |
bitstream.url.fl_str_mv |
https://dspace.mackenzie.br/bitstreams/bf7a8340-497e-4325-be20-3a9c75fe7832/download https://dspace.mackenzie.br/bitstreams/9391b2b5-a2ea-4fbb-ab7f-a52a9aa15a3e/download https://dspace.mackenzie.br/bitstreams/cc401f7a-de3f-4543-961d-ac43611bc7dd/download https://dspace.mackenzie.br/bitstreams/c8694df9-978e-43ab-9240-08be4eb0476c/download https://dspace.mackenzie.br/bitstreams/9f762ad9-21e1-492c-80f4-ba1ebeedb5e7/download https://dspace.mackenzie.br/bitstreams/74d3f7d0-89cc-4b17-afd3-9b9f0472ffb7/download https://dspace.mackenzie.br/bitstreams/f627ab27-32c0-4731-81e2-2e01bf201350/download |
bitstream.checksum.fl_str_mv |
9c440ac0d848cc737809e733d33e143b 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 1ca4f25d161e955cf4b7a4aa65b8e96e 20c96b74bde3be92f30846d440028d5b e542c4763d2c9d8aa33c82a0d120e2f9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE) |
repository.mail.fl_str_mv |
repositorio@mackenzie.br||paola.damato@mackenzie.br |
_version_ |
1813820063084445696 |