Classificação automática do comportamento dinâmico automato celulares binários unidimensionais

Detalhes bibliográficos
Autor(a) principal: Nogueira, Marcelo Arbori
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do Mackenzie
Texto Completo: http://dspace.mackenzie.br/handle/10899/24300
Resumo: The variability of temporal evolution generated by cellular automata comes from the large number of possible rules, their initial con guration, the number of states, the number of cells in the neighborhood and the dimension of the lattice. Even for the simplest cases, the number of rules in the space can easily reach billions, and even if the lattice is one-dimensional, the number of possible temporal evolutions grows exponentially as the lattice size grows. Therefore, to classify the typical dynamics of the temporal evolutions is a dauting endeavour, so that any automated process for the task is clearly useful. We report here the development of two classi ers of the dynamics presented by the temporal evolutions, according to Wolfram's 4-class classi cation scheme, based on the elementary space, but also aiming to apply it to a larger space, whose classi cation is unknown, namely, the one with 4 cells in the neighbourhood and 2 possible states. At rst, a review was made of the classi cation method developed byWuensche (1998), in which, at each time step of the cellular automaton, the entropy variation observed in the temporal evolution was associated with the generating rule classes. The results obtained served as a reference for the classi ers developed further on. One of the two classi ers relied on a convolutional neural network, trained to predict the rule class that generated a temporal evolution. Since the 4 classes do not have the same amount of rules, which a ects the network training, the rules were chosen randomly, while keeping the same proportion for each class. The second classi er used texture analysis to extract, from the temporal evolutions, information of the neighborhood con gurations of the cells, which allowed for the construction of a frequency spectrum of these con gurations. A single spectrum, with the average frequency of each possible con guration associated with the generating rule was then included in a dataset, and used in the k-NN algorithm to obtain the prediction of the class at issue. The classi ers were evaluated in two ways: at rst, to de ne the classes of the elementary space, according to their typical behaviors, which are the most common ones displayed in a set of temporal evolutions. The predicted classes could be compared with the known classi cation of elementary space and total accuracy was observed for both. For the space with 4 cells in the neighbourhood, a visual classi cation of the entire space was performed. In this case, none of the classi ers achieved high accuracy. Still, they were able to extract information from that space, which is larger than the elementary space. Finally, confusion matrices were used to evaluate the quality of the classi ers with data from both spaces, with both classi ers having di culties in classifying the space with 4 cells in the vicinity.
id UPM_705e3270e9db011f434cac8cd9c11eb6
oai_identifier_str oai:dspace.mackenzie.br:10899/24300
network_acronym_str UPM
network_name_str Biblioteca Digital de Teses e Dissertações do Mackenzie
repository_id_str 10277
spelling http://lattes.cnpq.br/9556738277476279Nogueira, Marcelo ArboriOliveira, Pedro Paulo Balbi dehttp://lattes.cnpq.br/48252107464889352020-04-30T18:53:49Z2020-05-28T18:08:04Z2020-05-28T18:08:04Z2019-10-02The variability of temporal evolution generated by cellular automata comes from the large number of possible rules, their initial con guration, the number of states, the number of cells in the neighborhood and the dimension of the lattice. Even for the simplest cases, the number of rules in the space can easily reach billions, and even if the lattice is one-dimensional, the number of possible temporal evolutions grows exponentially as the lattice size grows. Therefore, to classify the typical dynamics of the temporal evolutions is a dauting endeavour, so that any automated process for the task is clearly useful. We report here the development of two classi ers of the dynamics presented by the temporal evolutions, according to Wolfram's 4-class classi cation scheme, based on the elementary space, but also aiming to apply it to a larger space, whose classi cation is unknown, namely, the one with 4 cells in the neighbourhood and 2 possible states. At rst, a review was made of the classi cation method developed byWuensche (1998), in which, at each time step of the cellular automaton, the entropy variation observed in the temporal evolution was associated with the generating rule classes. The results obtained served as a reference for the classi ers developed further on. One of the two classi ers relied on a convolutional neural network, trained to predict the rule class that generated a temporal evolution. Since the 4 classes do not have the same amount of rules, which a ects the network training, the rules were chosen randomly, while keeping the same proportion for each class. The second classi er used texture analysis to extract, from the temporal evolutions, information of the neighborhood con gurations of the cells, which allowed for the construction of a frequency spectrum of these con gurations. A single spectrum, with the average frequency of each possible con guration associated with the generating rule was then included in a dataset, and used in the k-NN algorithm to obtain the prediction of the class at issue. The classi ers were evaluated in two ways: at rst, to de ne the classes of the elementary space, according to their typical behaviors, which are the most common ones displayed in a set of temporal evolutions. The predicted classes could be compared with the known classi cation of elementary space and total accuracy was observed for both. For the space with 4 cells in the neighbourhood, a visual classi cation of the entire space was performed. In this case, none of the classi ers achieved high accuracy. Still, they were able to extract information from that space, which is larger than the elementary space. Finally, confusion matrices were used to evaluate the quality of the classi ers with data from both spaces, with both classi ers having di culties in classifying the space with 4 cells in the vicinity.A variabilidade de evoluções temporais geradas por autômatos celulares advém do grande número de regras possíveis, a sua configuração inicial, quantidade de estados, quantidade de células na vizinhança e dimensão do reticulado. Mesmo para os mais simples, o número de regras do autômato celular pode facilmente ser da ordem de bilhões, e ainda que o reticulado seja unidimensional, a quantidade de evoluções temporais possíveis cresce exponencialmente com relação ao tamanho do reticulado. Portanto, classificar a dinâmica típica das evoluções temporais e trabalho de difícil realização, sendo útil qualquer processo automatizado para a tarefa. Relata-se aqui o desenvolvimento de dois classificadores da dinâmica apresentada pelas evoluções temporais, segundo o esquema de classificação nas 4 classes de Wolfram, tendo como base o espaço elementar, mas tendo também por objetivo aplicá-lo em um espaço maior, cuja classificação e desconhecida, qual seja, aquele com 4 células na vizinhança e 2 estados possíveis. Inicialmente foi feita uma revisão da classificação das regras do espaço elementar desenvolvida por Wuensche (1998), no qual, a cada itera c~ao do autômato celular, a varia c~ao da entropia de evoluções temporais foi associada as classes das regras geradoras. Os resultados obtidos serviram como referência para os dois classificadores desenvolvidos posteriormente. Dos dois classificadores, um usou rede neural convolucional, treinada para predizer a classe da regra associada a uma evolução temporal. Como as 4 classes não possuem a mesma quantidade de regras, o que afeta o treinamento da rede, as regras foram escolhidas aleatoriamente, mas mantendo a mesma proporção para cada classe. O segundo classificador usou análise de textura para extrair, das evoluções temporais, informação quanto as configurações de vizinhanças das células, de forma a se poder construir um espectro de frequência destas configurações. Um único espectro, com a frequência média de cada configuração possível, associado a regra geradora, foi incluído em um conjunto de dados para ser utilizado no algoritmo k-NN, a m de se obter a predição da classe em questão. Os classificadores foram avaliados de duas formas: a princípio, para inferir as classes das regras do espaço elementar, tomando por base os comportamentos t picos delas, aqueles mais comumente apresentados em um conjunto de evoluções temporais. As classes preditas puderam ser comparadas com a classificação conhecida do espaço elementar e se observou acurácia total para ambos. J a para o espaço com 4 células na vizinhança, foi realizada uma classificação visual de todo o espaço. Neste caso, nenhum dos classificadores conseguiu acurácia elevada. Ainda assim, ambos foram capazes de extrair informações do espaço muito maior que o elementar. Por fim, foram usadas matrizes de confusão para avaliar a qualidade dos classificadores com dados dos dois espaços, com ambos os classificadores apresentando dificuldades na classificação do espaço com 4 células na vizinhançaCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorInstituto Presbiteriano Mackenzieapplication/pdfNOGUEIRA, Marcelo Arbori. Classificação automática do comportamento dinâmico automato celulares binários unidimensionais. 2019. 89 f. Tese (doutorado em Engenharia Elétrica e Computação) - Universidade Presbiteriana Mackenzie, São Paulo, 2019.http://dspace.mackenzie.br/handle/10899/24300cellular automatoconvolutional neural networkdynamic behaviour classi cationwolfram classesspectrum of neighbourhood con gurationdeep learningporUniversidade Presbiteriana Mackenzieautômato celularrede neural convolucionalclassificação de comportamento dinâmicoclasses de Wolframespectro de con guração de vizinhançaaprendizado profundoCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAClassificação automática do comportamento dinâmico automato celulares binários unidimensionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIERuivo, Eurico Luiz ProsperoCosta , Pedro Contino da SilvaSchimit, Pedro Henrique TriguisBahamon, DarioBrasilEscola de Engenharia Mackenzie (EE)UPMEngenharia ElétricaORIGINALMARCELO ARBORI NOGUEIRA.pdfMARCELO ARBORI NOGUEIRA.pdfapplication/pdf1291772https://dspace.mackenzie.br/bitstreams/97673aa8-6f31-4073-a2c1-edd8234d2a6b/downloadfbe3199657add3a30da2b6799a23b844MD51TEXTMARCELO ARBORI NOGUEIRA.pdf.txtMARCELO ARBORI NOGUEIRA.pdf.txtExtracted texttext/plain168224https://dspace.mackenzie.br/bitstreams/4c154414-c519-4693-8085-35b2d9ca44b4/downloade63a1cde104fa838a336b3bf65906c8eMD52THUMBNAILMARCELO ARBORI NOGUEIRA.pdf.jpgMARCELO ARBORI NOGUEIRA.pdf.jpgGenerated Thumbnailimage/jpeg1202https://dspace.mackenzie.br/bitstreams/52fedf37-3ab9-4659-990b-3b5eb29a1c78/download381590ec0b83e4f3c23631e66d4022ecMD5310899/243002022-03-14 16:58:59.839oai:dspace.mackenzie.br:10899/24300https://dspace.mackenzie.brBiblioteca Digital de Teses e Dissertaçõeshttp://tede.mackenzie.br/jspui/PRIhttps://adelpha-api.mackenzie.br/server/oai/repositorio@mackenzie.br||paola.damato@mackenzie.bropendoar:102772022-03-14T16:58:59Biblioteca Digital de Teses e Dissertações do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)false
dc.title.por.fl_str_mv Classificação automática do comportamento dinâmico automato celulares binários unidimensionais
title Classificação automática do comportamento dinâmico automato celulares binários unidimensionais
spellingShingle Classificação automática do comportamento dinâmico automato celulares binários unidimensionais
Nogueira, Marcelo Arbori
autômato celular
rede neural convolucional
classificação de comportamento dinâmico
classes de Wolfram
espectro de con guração de vizinhança
aprendizado profundo
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Classificação automática do comportamento dinâmico automato celulares binários unidimensionais
title_full Classificação automática do comportamento dinâmico automato celulares binários unidimensionais
title_fullStr Classificação automática do comportamento dinâmico automato celulares binários unidimensionais
title_full_unstemmed Classificação automática do comportamento dinâmico automato celulares binários unidimensionais
title_sort Classificação automática do comportamento dinâmico automato celulares binários unidimensionais
author Nogueira, Marcelo Arbori
author_facet Nogueira, Marcelo Arbori
author_role author
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9556738277476279
dc.contributor.author.fl_str_mv Nogueira, Marcelo Arbori
dc.contributor.advisor1.fl_str_mv Oliveira, Pedro Paulo Balbi de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4825210746488935
contributor_str_mv Oliveira, Pedro Paulo Balbi de
dc.subject.por.fl_str_mv autômato celular
rede neural convolucional
classificação de comportamento dinâmico
classes de Wolfram
espectro de con guração de vizinhança
aprendizado profundo
topic autômato celular
rede neural convolucional
classificação de comportamento dinâmico
classes de Wolfram
espectro de con guração de vizinhança
aprendizado profundo
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description The variability of temporal evolution generated by cellular automata comes from the large number of possible rules, their initial con guration, the number of states, the number of cells in the neighborhood and the dimension of the lattice. Even for the simplest cases, the number of rules in the space can easily reach billions, and even if the lattice is one-dimensional, the number of possible temporal evolutions grows exponentially as the lattice size grows. Therefore, to classify the typical dynamics of the temporal evolutions is a dauting endeavour, so that any automated process for the task is clearly useful. We report here the development of two classi ers of the dynamics presented by the temporal evolutions, according to Wolfram's 4-class classi cation scheme, based on the elementary space, but also aiming to apply it to a larger space, whose classi cation is unknown, namely, the one with 4 cells in the neighbourhood and 2 possible states. At rst, a review was made of the classi cation method developed byWuensche (1998), in which, at each time step of the cellular automaton, the entropy variation observed in the temporal evolution was associated with the generating rule classes. The results obtained served as a reference for the classi ers developed further on. One of the two classi ers relied on a convolutional neural network, trained to predict the rule class that generated a temporal evolution. Since the 4 classes do not have the same amount of rules, which a ects the network training, the rules were chosen randomly, while keeping the same proportion for each class. The second classi er used texture analysis to extract, from the temporal evolutions, information of the neighborhood con gurations of the cells, which allowed for the construction of a frequency spectrum of these con gurations. A single spectrum, with the average frequency of each possible con guration associated with the generating rule was then included in a dataset, and used in the k-NN algorithm to obtain the prediction of the class at issue. The classi ers were evaluated in two ways: at rst, to de ne the classes of the elementary space, according to their typical behaviors, which are the most common ones displayed in a set of temporal evolutions. The predicted classes could be compared with the known classi cation of elementary space and total accuracy was observed for both. For the space with 4 cells in the neighbourhood, a visual classi cation of the entire space was performed. In this case, none of the classi ers achieved high accuracy. Still, they were able to extract information from that space, which is larger than the elementary space. Finally, confusion matrices were used to evaluate the quality of the classi ers with data from both spaces, with both classi ers having di culties in classifying the space with 4 cells in the vicinity.
publishDate 2019
dc.date.issued.fl_str_mv 2019-10-02
dc.date.accessioned.fl_str_mv 2020-04-30T18:53:49Z
2020-05-28T18:08:04Z
dc.date.available.fl_str_mv 2020-05-28T18:08:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NOGUEIRA, Marcelo Arbori. Classificação automática do comportamento dinâmico automato celulares binários unidimensionais. 2019. 89 f. Tese (doutorado em Engenharia Elétrica e Computação) - Universidade Presbiteriana Mackenzie, São Paulo, 2019.
dc.identifier.uri.fl_str_mv http://dspace.mackenzie.br/handle/10899/24300
identifier_str_mv NOGUEIRA, Marcelo Arbori. Classificação automática do comportamento dinâmico automato celulares binários unidimensionais. 2019. 89 f. Tese (doutorado em Engenharia Elétrica e Computação) - Universidade Presbiteriana Mackenzie, São Paulo, 2019.
url http://dspace.mackenzie.br/handle/10899/24300
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Presbiteriana Mackenzie
publisher.none.fl_str_mv Universidade Presbiteriana Mackenzie
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do Mackenzie
instname:Universidade Presbiteriana Mackenzie (MACKENZIE)
instacron:MACKENZIE
instname_str Universidade Presbiteriana Mackenzie (MACKENZIE)
instacron_str MACKENZIE
institution MACKENZIE
reponame_str Biblioteca Digital de Teses e Dissertações do Mackenzie
collection Biblioteca Digital de Teses e Dissertações do Mackenzie
bitstream.url.fl_str_mv https://dspace.mackenzie.br/bitstreams/97673aa8-6f31-4073-a2c1-edd8234d2a6b/download
https://dspace.mackenzie.br/bitstreams/4c154414-c519-4693-8085-35b2d9ca44b4/download
https://dspace.mackenzie.br/bitstreams/52fedf37-3ab9-4659-990b-3b5eb29a1c78/download
bitstream.checksum.fl_str_mv fbe3199657add3a30da2b6799a23b844
e63a1cde104fa838a336b3bf65906c8e
381590ec0b83e4f3c23631e66d4022ec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)
repository.mail.fl_str_mv repositorio@mackenzie.br||paola.damato@mackenzie.br
_version_ 1813820000469778432