Estimação não-paramétrica e semi-paramétrica de fronteiras de produção

Detalhes bibliográficos
Autor(a) principal: Torrent, Hudson da Silva
Data de Publicação: 2010
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/25786
Resumo: Existe uma grande e crescente literatura sobre especificação e estimação de fronteiras de produção e, portanto, de eficiência de unidades produtivas. Nesta tese, o foco esta sobre modelos de fronteiras determinísticas, os quais são baseados na hipótese de que os dados observados pertencem ao conjunto tecnológico. Dentre os modelos estatísticos e estimadores para fronteiras determinísticas existentes, uma abordagem promissora e a adotada por Martins-Filho e Yao (2007). Esses autores propõem um procedimento de estimação composto por três estágios. Esse estimador e de fácil implementação, visto que envolve procedimentos não-paramétricos bem conhecidos. Além disso, o estimador possui características desejáveis vis-à-vis estimadores para fronteiras determinísticas tradicionais como DEA e FDH. Nesta tese, três artigos, que melhoram o modelo proposto por Martins-Filho e Yao (2007), sao propostos. No primeiro artigo, o procedimento de estimação desses autores e melhorado a partir de uma variação do estimador exponencial local, proposto por Ziegelmann (2002). Demonstra-se que estimador proposto a consistente e assintoticamente normal. Além disso, devido ao estimador exponencial local, estimativas potencialmente negativas para a função de variância condicional, que poderiam prejudicar a aplicabilidade do estimador proposto por Martins-Filho e Yao, são evitadas. No segundo artigo, e proposto um método original para estimação de fronteiras de produção em apenas dois estágios. E mostrado que se pode eliminar o segundo estágio proposto por Martins-Filho e Yao, assim como, eliminar o segundo estagio proposto no primeiro artigo desta tese. Em ambos os casos, a estimação do mesmo modelo de fronteira de produção requer três estágios, sendo versões diferentes para o segundo estagio. As propriedades assintóticas do estimador proposto são analisadas, mostrando-se consistência e normalidade assintótica sob hipóteses razoáveis. No terceiro artigo, a proposta uma variação semi-paramétrica do modelo estudado no segundo artigo. Reescreve-se aquele modelo de modo que se possa estimar a fronteira de produção e a eficiência de unidades produtivas no contexto de múltiplos insumos, sem incorrer no curse of dimensionality. A abordagem adotada coloca o modelo na estrutura de modelos aditivos, a partir de hipóteses sobre como os insumos se combinam no processo produtivo. Em particular, considera-se aqui os casos de insumos aditivos e insumos multiplicativos, os quais são amplamente considerados em teoria econômica e aplicações. Estudos de Monte Carlo são apresentados em todos os artigos, afim de elucidar as propriedades dos estimadores propostos em amostras finitas. Além disso, estudos com dados reais são apresentados em todos os artigos, nos quais são estimador rankings de eficiência para uma amostra de departamentos policiais dos EUA, a partir de dados sobre criminalidade daquele país.
id URGS_00e8f7c452729fda9f8cc0529ecf3db9
oai_identifier_str oai:www.lume.ufrgs.br:10183/25786
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Torrent, Hudson da SilvaZiegelmann, Flavio Augusto2010-09-16T04:19:24Z2010http://hdl.handle.net/10183/25786000745580Existe uma grande e crescente literatura sobre especificação e estimação de fronteiras de produção e, portanto, de eficiência de unidades produtivas. Nesta tese, o foco esta sobre modelos de fronteiras determinísticas, os quais são baseados na hipótese de que os dados observados pertencem ao conjunto tecnológico. Dentre os modelos estatísticos e estimadores para fronteiras determinísticas existentes, uma abordagem promissora e a adotada por Martins-Filho e Yao (2007). Esses autores propõem um procedimento de estimação composto por três estágios. Esse estimador e de fácil implementação, visto que envolve procedimentos não-paramétricos bem conhecidos. Além disso, o estimador possui características desejáveis vis-à-vis estimadores para fronteiras determinísticas tradicionais como DEA e FDH. Nesta tese, três artigos, que melhoram o modelo proposto por Martins-Filho e Yao (2007), sao propostos. No primeiro artigo, o procedimento de estimação desses autores e melhorado a partir de uma variação do estimador exponencial local, proposto por Ziegelmann (2002). Demonstra-se que estimador proposto a consistente e assintoticamente normal. Além disso, devido ao estimador exponencial local, estimativas potencialmente negativas para a função de variância condicional, que poderiam prejudicar a aplicabilidade do estimador proposto por Martins-Filho e Yao, são evitadas. No segundo artigo, e proposto um método original para estimação de fronteiras de produção em apenas dois estágios. E mostrado que se pode eliminar o segundo estágio proposto por Martins-Filho e Yao, assim como, eliminar o segundo estagio proposto no primeiro artigo desta tese. Em ambos os casos, a estimação do mesmo modelo de fronteira de produção requer três estágios, sendo versões diferentes para o segundo estagio. As propriedades assintóticas do estimador proposto são analisadas, mostrando-se consistência e normalidade assintótica sob hipóteses razoáveis. No terceiro artigo, a proposta uma variação semi-paramétrica do modelo estudado no segundo artigo. Reescreve-se aquele modelo de modo que se possa estimar a fronteira de produção e a eficiência de unidades produtivas no contexto de múltiplos insumos, sem incorrer no curse of dimensionality. A abordagem adotada coloca o modelo na estrutura de modelos aditivos, a partir de hipóteses sobre como os insumos se combinam no processo produtivo. Em particular, considera-se aqui os casos de insumos aditivos e insumos multiplicativos, os quais são amplamente considerados em teoria econômica e aplicações. Estudos de Monte Carlo são apresentados em todos os artigos, afim de elucidar as propriedades dos estimadores propostos em amostras finitas. Além disso, estudos com dados reais são apresentados em todos os artigos, nos quais são estimador rankings de eficiência para uma amostra de departamentos policiais dos EUA, a partir de dados sobre criminalidade daquele país.There exists a large and growing literature on the specification and estimation of production frontiers and therefore efficiency of production units. In this thesis we focus on deterministic production frontier models, which are based on the assumption that all observed data lie in the technological set. Among the existing statistical models and estimators for deterministic frontiers, a promising approach is that of Martins-Filho and Yao (2007). They propose an estimation procedure that consists of three stages. Their estimator is fairly easy to implement as it involves standard nonparametric procedures. In addition, it has a number of desirable characteristics vis-a-vis traditional deterministic frontier estimators as DEA and FDH. In this thesis we propose three papers that improve the model proposed in Martins-Filho and Yao (2007). In the first paper we improve their estimation procedure by adopting a variant of the local exponential smoothing proposed in Ziegelmann (2002). Our estimator is shown to be consistent and asymptotically normal. In addition, due to local exponential smoothing, potential negativity of conditional variance functions that may hinder the use of Martins-Filho and Yao's estimator is avoided. In the second paper we propose a novel method for estimating production frontiers in only two stages. (Continue). There we show that we can eliminate the second stage of Martins-Filho and Yao as well as of our first paper, where estimation of the same frontier model requires three stages under different versions for the second stage. We study asymptotic properties showing consistency andNirtnin, asymptotic normality of our proposed estimator under standard assumptions. In the third paper we propose a semiparametric variation of the frontier model studied in the second paper. We rewrite that model allowing for estimating the production frontier and efficiency of production units in a multiple input context without suffering the curse of dimensionality. Our approach places that model within the framework of additive models based on assumptions regarding the way inputs combine in production. In particular, we consider the cases of additive and multiplicative inputs, which are widely considered in economic theory and applications. Monte Carlo studies are performed in all papers to shed light on the finite sample properties of the proposed estimators. Furthermore a real data study is carried out in all papers, from which we rank efficiency within a sample of USA Law Enforcement agencies using USA crime data.application/pdfporEstimaçãoModelo matemáticoInferência estatísticaNonparametric frontier modelsLocal exponential regressionLocal linear regressionAdditive models Semiparametric regressionClassical BackfittingSmooth BackfittingEstimação não-paramétrica e semi-paramétrica de fronteiras de produçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulFaculdade de Ciências EconômicasPrograma de Pós-Graduação em EconomiaPorto Alegre, BR-RS2010doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000745580.pdf000745580.pdfTexto completoapplication/pdf6363329http://www.lume.ufrgs.br/bitstream/10183/25786/1/000745580.pdf7956ff814c7fc5c933fc6adabdefd7e3MD51TEXT000745580.pdf.txt000745580.pdf.txtExtracted Texttext/plain238008http://www.lume.ufrgs.br/bitstream/10183/25786/2/000745580.pdf.txt5f3f7dedae27d6aba5f1ff09392e8ad8MD52THUMBNAIL000745580.pdf.jpg000745580.pdf.jpgGenerated Thumbnailimage/jpeg979http://www.lume.ufrgs.br/bitstream/10183/25786/3/000745580.pdf.jpg3c04d1a1753e5c49cc354f1645f18050MD5310183/257862019-03-15 02:29:33.655012oai:www.lume.ufrgs.br:10183/25786Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532019-03-15T05:29:33Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Estimação não-paramétrica e semi-paramétrica de fronteiras de produção
title Estimação não-paramétrica e semi-paramétrica de fronteiras de produção
spellingShingle Estimação não-paramétrica e semi-paramétrica de fronteiras de produção
Torrent, Hudson da Silva
Estimação
Modelo matemático
Inferência estatística
Nonparametric frontier models
Local exponential regression
Local linear regression
Additive models Semiparametric regression
Classical Backfitting
Smooth Backfitting
title_short Estimação não-paramétrica e semi-paramétrica de fronteiras de produção
title_full Estimação não-paramétrica e semi-paramétrica de fronteiras de produção
title_fullStr Estimação não-paramétrica e semi-paramétrica de fronteiras de produção
title_full_unstemmed Estimação não-paramétrica e semi-paramétrica de fronteiras de produção
title_sort Estimação não-paramétrica e semi-paramétrica de fronteiras de produção
author Torrent, Hudson da Silva
author_facet Torrent, Hudson da Silva
author_role author
dc.contributor.author.fl_str_mv Torrent, Hudson da Silva
dc.contributor.advisor1.fl_str_mv Ziegelmann, Flavio Augusto
contributor_str_mv Ziegelmann, Flavio Augusto
dc.subject.por.fl_str_mv Estimação
Modelo matemático
Inferência estatística
topic Estimação
Modelo matemático
Inferência estatística
Nonparametric frontier models
Local exponential regression
Local linear regression
Additive models Semiparametric regression
Classical Backfitting
Smooth Backfitting
dc.subject.eng.fl_str_mv Nonparametric frontier models
Local exponential regression
Local linear regression
Additive models Semiparametric regression
Classical Backfitting
Smooth Backfitting
description Existe uma grande e crescente literatura sobre especificação e estimação de fronteiras de produção e, portanto, de eficiência de unidades produtivas. Nesta tese, o foco esta sobre modelos de fronteiras determinísticas, os quais são baseados na hipótese de que os dados observados pertencem ao conjunto tecnológico. Dentre os modelos estatísticos e estimadores para fronteiras determinísticas existentes, uma abordagem promissora e a adotada por Martins-Filho e Yao (2007). Esses autores propõem um procedimento de estimação composto por três estágios. Esse estimador e de fácil implementação, visto que envolve procedimentos não-paramétricos bem conhecidos. Além disso, o estimador possui características desejáveis vis-à-vis estimadores para fronteiras determinísticas tradicionais como DEA e FDH. Nesta tese, três artigos, que melhoram o modelo proposto por Martins-Filho e Yao (2007), sao propostos. No primeiro artigo, o procedimento de estimação desses autores e melhorado a partir de uma variação do estimador exponencial local, proposto por Ziegelmann (2002). Demonstra-se que estimador proposto a consistente e assintoticamente normal. Além disso, devido ao estimador exponencial local, estimativas potencialmente negativas para a função de variância condicional, que poderiam prejudicar a aplicabilidade do estimador proposto por Martins-Filho e Yao, são evitadas. No segundo artigo, e proposto um método original para estimação de fronteiras de produção em apenas dois estágios. E mostrado que se pode eliminar o segundo estágio proposto por Martins-Filho e Yao, assim como, eliminar o segundo estagio proposto no primeiro artigo desta tese. Em ambos os casos, a estimação do mesmo modelo de fronteira de produção requer três estágios, sendo versões diferentes para o segundo estagio. As propriedades assintóticas do estimador proposto são analisadas, mostrando-se consistência e normalidade assintótica sob hipóteses razoáveis. No terceiro artigo, a proposta uma variação semi-paramétrica do modelo estudado no segundo artigo. Reescreve-se aquele modelo de modo que se possa estimar a fronteira de produção e a eficiência de unidades produtivas no contexto de múltiplos insumos, sem incorrer no curse of dimensionality. A abordagem adotada coloca o modelo na estrutura de modelos aditivos, a partir de hipóteses sobre como os insumos se combinam no processo produtivo. Em particular, considera-se aqui os casos de insumos aditivos e insumos multiplicativos, os quais são amplamente considerados em teoria econômica e aplicações. Estudos de Monte Carlo são apresentados em todos os artigos, afim de elucidar as propriedades dos estimadores propostos em amostras finitas. Além disso, estudos com dados reais são apresentados em todos os artigos, nos quais são estimador rankings de eficiência para uma amostra de departamentos policiais dos EUA, a partir de dados sobre criminalidade daquele país.
publishDate 2010
dc.date.accessioned.fl_str_mv 2010-09-16T04:19:24Z
dc.date.issued.fl_str_mv 2010
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/25786
dc.identifier.nrb.pt_BR.fl_str_mv 000745580
url http://hdl.handle.net/10183/25786
identifier_str_mv 000745580
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/25786/1/000745580.pdf
http://www.lume.ufrgs.br/bitstream/10183/25786/2/000745580.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/25786/3/000745580.pdf.jpg
bitstream.checksum.fl_str_mv 7956ff814c7fc5c933fc6adabdefd7e3
5f3f7dedae27d6aba5f1ff09392e8ad8
3c04d1a1753e5c49cc354f1645f18050
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085183667306496