Scalable state machine replication

Detalhes bibliográficos
Autor(a) principal: Bezerra, Carlos Eduardo Benevides
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/148568
Resumo: Redundância provê tolerância a falhas. Um serviço pode ser executado em múltiplos servidores que se replicam uns aos outros, de maneira a prover disponibilidade do serviço em caso de falhas. Uma maneira de implementar um tal serviço replicado é através de técnicas como replicação de máquina de estados (SMR). SMR provê tolerância a falhas, ao mesmo tempo que é linearizável, isto é, clientes não são capazes de distinguir o comportamento do sistema replicado daquele de um sistema não replicado. No entanto, ter um sistema completamente replicado e linearizável vem com um custo, que é escalabilidade – por escalabilidade, queremos dizer que adicionar servidores ao sistema aumenta a sua vazão, pelo menos para algumas cargas de trabalho. Mesmo com uma configuração cuidadosa e usando otimizações que evitam que os servidores executem ações redundantes desnecessárias, em um determinado ponto a vazão de um sistema replicado com SMR não pode ser mais aumentada acrescentando-se servidores; na verdade, adicionar réplicas pode até degradar a sua performance. Uma maneira de conseguir escalabilidade é particionar o serviço e então permitir que partições trabalhem independentemente. Por outro lado, ter um sistema particionado, porém linearizável e com razoavelmente boa performance não é trivial, e esse é o tópico de pesquisa tratado aqui. Para permitir que sistemas escalem, ao mesmo tempo que se garante linearizabilidade, nós propomos as seguinte ideias: (i) Replicação Escalável de Máquina de Estados (SSMR), (ii) Multicast Atômico Otimista (Opt-amcast) e (iii) S-SMR Rápido (Fast-SSMR). S-SMR é um modelo de execução que permite que a vazão do sistema escale de maneira linear com o número de servidores, sem sacrificar consistência. Para reduzir o tempo de resposta dos comandos, nós definimos o conceito de Opt-amcast, que permite que mensagens sejam entregues duas vezes: uma entrega garante ordem atômica (entrega atômica), enquanto a outra é mais rápida, mas nem sempre garante ordem atômica (entrega otimista). A implementação de Opt-amcast que nós propomos nessa tese se chama Ridge, um protocolo que combina baixa latência com alta vazão. Fast-SSMR é uma extensão do S-SMR que utiliza a entrega otimista do Opt-amcast: enquanto um comando é ordenado de maneira atômica, pode-se fazer alguma pré-computação baseado na entrega otimista, reduzindo assim tempo de resposta.
id URGS_06b18abb2508ef3383edbe92ff1b96ca
oai_identifier_str oai:www.lume.ufrgs.br:10183/148568
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Bezerra, Carlos Eduardo BenevidesGeyer, Claudio Fernando ResinPedone Junior, Fernando Lopes2016-09-28T02:14:45Z2016http://hdl.handle.net/10183/148568001002754Redundância provê tolerância a falhas. Um serviço pode ser executado em múltiplos servidores que se replicam uns aos outros, de maneira a prover disponibilidade do serviço em caso de falhas. Uma maneira de implementar um tal serviço replicado é através de técnicas como replicação de máquina de estados (SMR). SMR provê tolerância a falhas, ao mesmo tempo que é linearizável, isto é, clientes não são capazes de distinguir o comportamento do sistema replicado daquele de um sistema não replicado. No entanto, ter um sistema completamente replicado e linearizável vem com um custo, que é escalabilidade – por escalabilidade, queremos dizer que adicionar servidores ao sistema aumenta a sua vazão, pelo menos para algumas cargas de trabalho. Mesmo com uma configuração cuidadosa e usando otimizações que evitam que os servidores executem ações redundantes desnecessárias, em um determinado ponto a vazão de um sistema replicado com SMR não pode ser mais aumentada acrescentando-se servidores; na verdade, adicionar réplicas pode até degradar a sua performance. Uma maneira de conseguir escalabilidade é particionar o serviço e então permitir que partições trabalhem independentemente. Por outro lado, ter um sistema particionado, porém linearizável e com razoavelmente boa performance não é trivial, e esse é o tópico de pesquisa tratado aqui. Para permitir que sistemas escalem, ao mesmo tempo que se garante linearizabilidade, nós propomos as seguinte ideias: (i) Replicação Escalável de Máquina de Estados (SSMR), (ii) Multicast Atômico Otimista (Opt-amcast) e (iii) S-SMR Rápido (Fast-SSMR). S-SMR é um modelo de execução que permite que a vazão do sistema escale de maneira linear com o número de servidores, sem sacrificar consistência. Para reduzir o tempo de resposta dos comandos, nós definimos o conceito de Opt-amcast, que permite que mensagens sejam entregues duas vezes: uma entrega garante ordem atômica (entrega atômica), enquanto a outra é mais rápida, mas nem sempre garante ordem atômica (entrega otimista). A implementação de Opt-amcast que nós propomos nessa tese se chama Ridge, um protocolo que combina baixa latência com alta vazão. Fast-SSMR é uma extensão do S-SMR que utiliza a entrega otimista do Opt-amcast: enquanto um comando é ordenado de maneira atômica, pode-se fazer alguma pré-computação baseado na entrega otimista, reduzindo assim tempo de resposta.Redundancy provides fault-tolerance. A service can run on multiple servers that replicate each other, in order to provide service availability even in the case of crashes. A way to implement such a replicated service is by using techniques like state machine replication (SMR). SMR provides fault tolerance, while being linearizable, that is, clients cannot distinguish the behaviour of the replicated system to that of a single-site, unreplicated one. However, having a fully replicated, linearizable system comes at a cost, namely, scalability—by scalability we mean that adding servers will always increase the maximum system throughput, at least for some workloads. Even with a careful setup and using optimizations that avoid unnecessary redundant actions to be taken by servers, at some point the throughput of a system replicated with SMR cannot be increased by additional servers; in fact, adding replicas may even degrade performance. A way to achieve scalability is by partitioning the service state and then allowing partitions to work independently. Having a partitioned, yet linearizable and reasonably performant service is not trivial, and this is the topic of research addressed here. To allow systems to scale, while at the same time ensuring linearizability, we propose and implement the following ideas: (i) Scalable State Machine Replication (S-SMR), (ii) Optimistic Atomic Multicast (Opt-amcast), and (iii) Fast S-SMR (Fast-SSMR). S-SMR is an execution model that allows the throughput of the system to scale linearly with the number of servers without sacrificing consistency. To provide faster responses for commands, we developed Opt-amcast, which allows messages to be delivered twice: one delivery guarantees atomic order (conservative delivery), while the other is fast, but not always guarantees atomic order (optimistic delivery). The implementation of Opt-amcast that we propose is called Ridge, a protocol that combines low latency with high throughput. Fast-SSMR is an extension of S-SMR that uses the optimistic delivery of Opt-amcast: while a command is atomically ordered, some precomputation can be done based on its fast, optimistically ordered delivery, improving response time.application/pdfengTolerancia : FalhasReplicacao : DadosEscalonamentoState machine replicationScalabilityAtomic multicastScalable state machine replicationReplicação escalável de máquina de estados info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2015doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001002754.pdf001002754.pdfTexto completo (inglês)application/pdf824417http://www.lume.ufrgs.br/bitstream/10183/148568/1/001002754.pdf4c06baf91df2d7e73d050fde8e79ab38MD51TEXT001002754.pdf.txt001002754.pdf.txtExtracted Texttext/plain250639http://www.lume.ufrgs.br/bitstream/10183/148568/2/001002754.pdf.txt00ea36adc7ab6ded0ec970a4e4cb001dMD52THUMBNAIL001002754.pdf.jpg001002754.pdf.jpgGenerated Thumbnailimage/jpeg992http://www.lume.ufrgs.br/bitstream/10183/148568/3/001002754.pdf.jpg933ee634847c50558dde91ef71badfceMD5310183/1485682021-05-26 04:43:39.639262oai:www.lume.ufrgs.br:10183/148568Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:43:39Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Scalable state machine replication
dc.title.alternative.pt.fl_str_mv Replicação escalável de máquina de estados
title Scalable state machine replication
spellingShingle Scalable state machine replication
Bezerra, Carlos Eduardo Benevides
Tolerancia : Falhas
Replicacao : Dados
Escalonamento
State machine replication
Scalability
Atomic multicast
title_short Scalable state machine replication
title_full Scalable state machine replication
title_fullStr Scalable state machine replication
title_full_unstemmed Scalable state machine replication
title_sort Scalable state machine replication
author Bezerra, Carlos Eduardo Benevides
author_facet Bezerra, Carlos Eduardo Benevides
author_role author
dc.contributor.author.fl_str_mv Bezerra, Carlos Eduardo Benevides
dc.contributor.advisor1.fl_str_mv Geyer, Claudio Fernando Resin
dc.contributor.advisor-co1.fl_str_mv Pedone Junior, Fernando Lopes
contributor_str_mv Geyer, Claudio Fernando Resin
Pedone Junior, Fernando Lopes
dc.subject.por.fl_str_mv Tolerancia : Falhas
Replicacao : Dados
Escalonamento
topic Tolerancia : Falhas
Replicacao : Dados
Escalonamento
State machine replication
Scalability
Atomic multicast
dc.subject.eng.fl_str_mv State machine replication
Scalability
Atomic multicast
description Redundância provê tolerância a falhas. Um serviço pode ser executado em múltiplos servidores que se replicam uns aos outros, de maneira a prover disponibilidade do serviço em caso de falhas. Uma maneira de implementar um tal serviço replicado é através de técnicas como replicação de máquina de estados (SMR). SMR provê tolerância a falhas, ao mesmo tempo que é linearizável, isto é, clientes não são capazes de distinguir o comportamento do sistema replicado daquele de um sistema não replicado. No entanto, ter um sistema completamente replicado e linearizável vem com um custo, que é escalabilidade – por escalabilidade, queremos dizer que adicionar servidores ao sistema aumenta a sua vazão, pelo menos para algumas cargas de trabalho. Mesmo com uma configuração cuidadosa e usando otimizações que evitam que os servidores executem ações redundantes desnecessárias, em um determinado ponto a vazão de um sistema replicado com SMR não pode ser mais aumentada acrescentando-se servidores; na verdade, adicionar réplicas pode até degradar a sua performance. Uma maneira de conseguir escalabilidade é particionar o serviço e então permitir que partições trabalhem independentemente. Por outro lado, ter um sistema particionado, porém linearizável e com razoavelmente boa performance não é trivial, e esse é o tópico de pesquisa tratado aqui. Para permitir que sistemas escalem, ao mesmo tempo que se garante linearizabilidade, nós propomos as seguinte ideias: (i) Replicação Escalável de Máquina de Estados (SSMR), (ii) Multicast Atômico Otimista (Opt-amcast) e (iii) S-SMR Rápido (Fast-SSMR). S-SMR é um modelo de execução que permite que a vazão do sistema escale de maneira linear com o número de servidores, sem sacrificar consistência. Para reduzir o tempo de resposta dos comandos, nós definimos o conceito de Opt-amcast, que permite que mensagens sejam entregues duas vezes: uma entrega garante ordem atômica (entrega atômica), enquanto a outra é mais rápida, mas nem sempre garante ordem atômica (entrega otimista). A implementação de Opt-amcast que nós propomos nessa tese se chama Ridge, um protocolo que combina baixa latência com alta vazão. Fast-SSMR é uma extensão do S-SMR que utiliza a entrega otimista do Opt-amcast: enquanto um comando é ordenado de maneira atômica, pode-se fazer alguma pré-computação baseado na entrega otimista, reduzindo assim tempo de resposta.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-28T02:14:45Z
dc.date.issued.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/148568
dc.identifier.nrb.pt_BR.fl_str_mv 001002754
url http://hdl.handle.net/10183/148568
identifier_str_mv 001002754
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/148568/1/001002754.pdf
http://www.lume.ufrgs.br/bitstream/10183/148568/2/001002754.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/148568/3/001002754.pdf.jpg
bitstream.checksum.fl_str_mv 4c06baf91df2d7e73d050fde8e79ab38
00ea36adc7ab6ded0ec970a4e4cb001d
933ee634847c50558dde91ef71badfce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085380026793984