Algoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmica

Detalhes bibliográficos
Autor(a) principal: Hax, Vanessa
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/150684
Resumo: Introdução: A doença intersticial pulmonar (DIP) é uma forma de acometimento visceral grave pela esclerose sistêmica (ES), correspondendo na atualidade à principal causa de mortalidade pela doença. Atualmente, a tomografia computadorizada de alta resolução pulmonar (TCAR) é considerada o padrão-ouro no seu diagnóstico. Estudos recentes têm proposto diversos algoritmos clínicos para a predição diagnóstica e prognóstica da DIP-ES, objetivando ampliar sua detecção precoce e auxiliar na determinação de sua evolução e prognóstico. Objetivo: Testar os algoritmos clínicos propostos na literatura na predição diagnóstica e prognóstica na DIP-ES, estimar sua prevalência e avaliar a associação da extensão do acometimento pulmonar na TCAR com mortalidade em uma coorte de pacientes com ES. Métodos: Estudo de coorte prospectivo, incluindo 177 pacientes com ES recrutados no período de abril de 2000 a abril de 2009, avaliados através de entrevista, exame físico, exames laboratoriais, provas de função pulmonar e TCAR. Algoritmos clínicos (A, B e C), combinando dados da ausculta pulmonar, radiografia de tórax e capacidade vital forçada (CVF), foram aplicados para o diagnóstico de diferentes extensões da pneumopatia intersticial na TCAR. Curvas de Kaplan-Meier e Regressão de Cox uni e multivariada foram utilizadas para analisar a associação dos algoritmos e da extensão de DIP na TCAR com a mortalidade. Resultados: A prevalência estimada de DIP na TCAR do baseline foi de 57,1% e 79 pacientes (44,6%) morreram em uma mediana de 11,1 anos de seguimento. Para identificação de DIP com extensão ≥10 e ≥20% na TCAR, todos os algoritmos apresentaram uma alta sensibilidade (>89%) e um likelihoodratio negativo muito baixo (<0,16). Para fins prognósticos, sobrevida foi reduzida para todos os algoritmos, com destaque para o algoritmo C, o qual identifica DIP considerando a presença de crepitantes na ausculta pulmonar, alterações na radiografia de tórax ou CVF <80% (HR 3,47; IC 95% 1,62-7,42). Pacientes com doença extensa como proposto por Goh e Wells (extensão >20% na TCAR ou, em casos indeterminados, CVF <70%) apresentam uma significativa redução na sobrevida (HR 3,42; IC 95% 2,12-5,52). Sobrevida não foi diferente entre pacientes com extensão ≥10 ou ≥20% na TCAR e análise de mortalidade em 10 anos sugere que extensão >10% na TCAR apresenta uma boa capacidade preditiva para mortalidade, embora não haja um ponto de corte claro a partir do qual ocorra um maior incremento na mortalidade. Conclusão: Algoritmos clínicos apresentam uma alta sensibilidade e um likelihood ratio negativo muito baixo para o diagnóstico de extensões de DIP com relevância clínica e prognóstica (≥10 e ≥20%) e foram fortemente associados com mortalidade. Assim sendo, a utilização desses algoritmos pode evitar a necessidade de realização de TCAR em alguns casos.
id URGS_072e907e00cecd03caf37a1f975f8f44
oai_identifier_str oai:www.lume.ufrgs.br:10183/150684
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Hax, VanessaXavier, Ricardo MachadoChakr, Rafael Mendonça da Silva2017-01-13T02:17:33Z2016http://hdl.handle.net/10183/150684001008725Introdução: A doença intersticial pulmonar (DIP) é uma forma de acometimento visceral grave pela esclerose sistêmica (ES), correspondendo na atualidade à principal causa de mortalidade pela doença. Atualmente, a tomografia computadorizada de alta resolução pulmonar (TCAR) é considerada o padrão-ouro no seu diagnóstico. Estudos recentes têm proposto diversos algoritmos clínicos para a predição diagnóstica e prognóstica da DIP-ES, objetivando ampliar sua detecção precoce e auxiliar na determinação de sua evolução e prognóstico. Objetivo: Testar os algoritmos clínicos propostos na literatura na predição diagnóstica e prognóstica na DIP-ES, estimar sua prevalência e avaliar a associação da extensão do acometimento pulmonar na TCAR com mortalidade em uma coorte de pacientes com ES. Métodos: Estudo de coorte prospectivo, incluindo 177 pacientes com ES recrutados no período de abril de 2000 a abril de 2009, avaliados através de entrevista, exame físico, exames laboratoriais, provas de função pulmonar e TCAR. Algoritmos clínicos (A, B e C), combinando dados da ausculta pulmonar, radiografia de tórax e capacidade vital forçada (CVF), foram aplicados para o diagnóstico de diferentes extensões da pneumopatia intersticial na TCAR. Curvas de Kaplan-Meier e Regressão de Cox uni e multivariada foram utilizadas para analisar a associação dos algoritmos e da extensão de DIP na TCAR com a mortalidade. Resultados: A prevalência estimada de DIP na TCAR do baseline foi de 57,1% e 79 pacientes (44,6%) morreram em uma mediana de 11,1 anos de seguimento. Para identificação de DIP com extensão ≥10 e ≥20% na TCAR, todos os algoritmos apresentaram uma alta sensibilidade (>89%) e um likelihoodratio negativo muito baixo (<0,16). Para fins prognósticos, sobrevida foi reduzida para todos os algoritmos, com destaque para o algoritmo C, o qual identifica DIP considerando a presença de crepitantes na ausculta pulmonar, alterações na radiografia de tórax ou CVF <80% (HR 3,47; IC 95% 1,62-7,42). Pacientes com doença extensa como proposto por Goh e Wells (extensão >20% na TCAR ou, em casos indeterminados, CVF <70%) apresentam uma significativa redução na sobrevida (HR 3,42; IC 95% 2,12-5,52). Sobrevida não foi diferente entre pacientes com extensão ≥10 ou ≥20% na TCAR e análise de mortalidade em 10 anos sugere que extensão >10% na TCAR apresenta uma boa capacidade preditiva para mortalidade, embora não haja um ponto de corte claro a partir do qual ocorra um maior incremento na mortalidade. Conclusão: Algoritmos clínicos apresentam uma alta sensibilidade e um likelihood ratio negativo muito baixo para o diagnóstico de extensões de DIP com relevância clínica e prognóstica (≥10 e ≥20%) e foram fortemente associados com mortalidade. Assim sendo, a utilização desses algoritmos pode evitar a necessidade de realização de TCAR em alguns casos.Introduction: Interstitial lung disease (ILD) is a form of severe visceral involvement by systemic sclerosis (SSc) and currently is the primary cause of death by disease. Thoracic high-resolution computed tomography (HRCT) is considered the gold standard for diagnosis. Recent studies have proposed several clinical algorithms to predict the diagnosis of SSc-ILD, aiming to expand its early detection and estimate prognosis. Objective: To test the clinical algorithms to predict the presence and prognosis of SSc-ILD, to estimate the prevalence of SSc-ILD, and to evaluate the association of extent of ILD with mortality in a cohort of SSc patients. Methods: Prospective cohort study, including 177 SSc patients assessed by clinical evaluation, laboratory tests, pulmonary function tests, and HRCT. Clinical algorithms, combining lung auscultation, chest radiography and % predicted forced vital capacity (FVC), were applied for the diagnosis of different extents of ILD on HRCT. Univariate and multivariate Cox proportional models were used to analyze the association of algorithms and the extent of ILD on HRCT with the risk of death using hazard ratios (HR). Results: The prevalence of ILD was 57.1% on baseline HRCT and 79 patients died (44.6%) in a median follow-up of 11.1 years. For identification of ILD with extent ≥10 and ≥20% on HRCT, all algorithms presented a high sensitivity (>89%) and a very low negative likelihood ratio (<0.16). For prognosis, survival was decreased for all algorithms, especially the algorithm C (HR 3.47, 95% CI 1.62-7.42), which identified the presence of ILD based on crackles on lung auscultation, findings on chest X-ray or FVC <80%. Extensive disease as proposed by Goh and Wells (extent of ILD >20% on HRCT or, in indeterminate cases, FVC <70%) had a significantly higher risk of death (HR 3.42, 95% CI 2.12 to 5.52). Survival was not different between patients with extent of 10 or 20% of ILD on HRCT, and analysis of 10-year mortality suggested that a threshold of 10% may also have a good predictive value for mortality. However, there is no clear cutoff above which mortality is sharply increased. Conclusion: Clinical algorithms had a good diagnostic performance for extent of SSc-ILD on HRCT with clinical and prognostic relevance (≥10 and ≥20%), and were also strongly related to mortality. Therefore, they probably could be used to obviate the requirement of HRCT in some cases.application/pdfporEscleroderma sistêmicoDoenças pulmonares intersticiaisTomografia computadorizadaSystemic sclerosisSclerodermaInterstitial lung diseaseInterstitial pneumoniaAlgorithmsDiagnosisPrognosisCohortAlgoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmicainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulFaculdade de MedicinaPrograma de Pós-Graduação em Medicina: Ciências MédicasPorto Alegre, BR-RS2016mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001008725.pdf.txt001008725.pdf.txtExtracted Texttext/plain153503http://www.lume.ufrgs.br/bitstream/10183/150684/2/001008725.pdf.txt3d83328274d628d4d18908aac43f0ccaMD52ORIGINAL001008725.pdf001008725.pdfTexto completoapplication/pdf1927614http://www.lume.ufrgs.br/bitstream/10183/150684/1/001008725.pdff6d3d8712c8eff8c635154c7aff70cf3MD5110183/1506842019-12-11 04:59:02.791424oai:www.lume.ufrgs.br:10183/150684Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532019-12-11T06:59:02Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Algoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmica
title Algoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmica
spellingShingle Algoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmica
Hax, Vanessa
Escleroderma sistêmico
Doenças pulmonares intersticiais
Tomografia computadorizada
Systemic sclerosis
Scleroderma
Interstitial lung disease
Interstitial pneumonia
Algorithms
Diagnosis
Prognosis
Cohort
title_short Algoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmica
title_full Algoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmica
title_fullStr Algoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmica
title_full_unstemmed Algoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmica
title_sort Algoritmos clínicos no diagnóstico e prognóstico da doença intersticial pulmonar em pacientes com esclerose sistêmica
author Hax, Vanessa
author_facet Hax, Vanessa
author_role author
dc.contributor.author.fl_str_mv Hax, Vanessa
dc.contributor.advisor1.fl_str_mv Xavier, Ricardo Machado
dc.contributor.advisor-co1.fl_str_mv Chakr, Rafael Mendonça da Silva
contributor_str_mv Xavier, Ricardo Machado
Chakr, Rafael Mendonça da Silva
dc.subject.por.fl_str_mv Escleroderma sistêmico
Doenças pulmonares intersticiais
Tomografia computadorizada
topic Escleroderma sistêmico
Doenças pulmonares intersticiais
Tomografia computadorizada
Systemic sclerosis
Scleroderma
Interstitial lung disease
Interstitial pneumonia
Algorithms
Diagnosis
Prognosis
Cohort
dc.subject.eng.fl_str_mv Systemic sclerosis
Scleroderma
Interstitial lung disease
Interstitial pneumonia
Algorithms
Diagnosis
Prognosis
Cohort
description Introdução: A doença intersticial pulmonar (DIP) é uma forma de acometimento visceral grave pela esclerose sistêmica (ES), correspondendo na atualidade à principal causa de mortalidade pela doença. Atualmente, a tomografia computadorizada de alta resolução pulmonar (TCAR) é considerada o padrão-ouro no seu diagnóstico. Estudos recentes têm proposto diversos algoritmos clínicos para a predição diagnóstica e prognóstica da DIP-ES, objetivando ampliar sua detecção precoce e auxiliar na determinação de sua evolução e prognóstico. Objetivo: Testar os algoritmos clínicos propostos na literatura na predição diagnóstica e prognóstica na DIP-ES, estimar sua prevalência e avaliar a associação da extensão do acometimento pulmonar na TCAR com mortalidade em uma coorte de pacientes com ES. Métodos: Estudo de coorte prospectivo, incluindo 177 pacientes com ES recrutados no período de abril de 2000 a abril de 2009, avaliados através de entrevista, exame físico, exames laboratoriais, provas de função pulmonar e TCAR. Algoritmos clínicos (A, B e C), combinando dados da ausculta pulmonar, radiografia de tórax e capacidade vital forçada (CVF), foram aplicados para o diagnóstico de diferentes extensões da pneumopatia intersticial na TCAR. Curvas de Kaplan-Meier e Regressão de Cox uni e multivariada foram utilizadas para analisar a associação dos algoritmos e da extensão de DIP na TCAR com a mortalidade. Resultados: A prevalência estimada de DIP na TCAR do baseline foi de 57,1% e 79 pacientes (44,6%) morreram em uma mediana de 11,1 anos de seguimento. Para identificação de DIP com extensão ≥10 e ≥20% na TCAR, todos os algoritmos apresentaram uma alta sensibilidade (>89%) e um likelihoodratio negativo muito baixo (<0,16). Para fins prognósticos, sobrevida foi reduzida para todos os algoritmos, com destaque para o algoritmo C, o qual identifica DIP considerando a presença de crepitantes na ausculta pulmonar, alterações na radiografia de tórax ou CVF <80% (HR 3,47; IC 95% 1,62-7,42). Pacientes com doença extensa como proposto por Goh e Wells (extensão >20% na TCAR ou, em casos indeterminados, CVF <70%) apresentam uma significativa redução na sobrevida (HR 3,42; IC 95% 2,12-5,52). Sobrevida não foi diferente entre pacientes com extensão ≥10 ou ≥20% na TCAR e análise de mortalidade em 10 anos sugere que extensão >10% na TCAR apresenta uma boa capacidade preditiva para mortalidade, embora não haja um ponto de corte claro a partir do qual ocorra um maior incremento na mortalidade. Conclusão: Algoritmos clínicos apresentam uma alta sensibilidade e um likelihood ratio negativo muito baixo para o diagnóstico de extensões de DIP com relevância clínica e prognóstica (≥10 e ≥20%) e foram fortemente associados com mortalidade. Assim sendo, a utilização desses algoritmos pode evitar a necessidade de realização de TCAR em alguns casos.
publishDate 2016
dc.date.issued.fl_str_mv 2016
dc.date.accessioned.fl_str_mv 2017-01-13T02:17:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/150684
dc.identifier.nrb.pt_BR.fl_str_mv 001008725
url http://hdl.handle.net/10183/150684
identifier_str_mv 001008725
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/150684/2/001008725.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/150684/1/001008725.pdf
bitstream.checksum.fl_str_mv 3d83328274d628d4d18908aac43f0cca
f6d3d8712c8eff8c635154c7aff70cf3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1816736945824333824