Um Sistema para aprendizagem de demonstrações dedutivas em geometria euclidiana

Detalhes bibliográficos
Autor(a) principal: Notare, Márcia Rodrigues
Data de Publicação: 2001
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/2414
Resumo: O objetivo do presente trabalho é realizar a concepção de um sistema para a aprendizagem de demonstrações da Geometria Euclidiana Plana e a implementação de um protótipo deste sistema, denominado LEEG - Learning Environment on Euclidean Geometry, desenvolvido para validar as idéias utilizadas em sua especificação. Nos últimos anos, tem-se observado uma crescente evolução dos sistemas de ensino e aprendizagem informatizados. A preocupação com o desenvolvimento de ambientes cada vez mais eficientes, tanto do ponto de vista computacional quanto pedagógico, tem repercutido em um salto de qualidade dos software educacionais. Tais sistemas visam promover, auxiliar e motivar a aprendizagem das mais diversas áreas do conhecimento, utilizando técnicas de Inteligência Artificial para se aproximarem ao máximo do comportamento de um tutor humano que se adapte e atenda às necessidades de cada aluno. A Geometria pode ser vista sob dois aspectos principais: considerada como uma ciência que estuda as representações do plano e do espaço e considerada como uma estrutura lógica, onde a estrutura matemática é representada e tratada no mais alto nível de rigor e formalismo. Entretanto, o ensino da Geometria, nos últimos anos, abandonou quase que totalmente sua abordagem dedutiva. Demonstrações de teoremas geométricos não são mais trabalhadas na maioria das escolas brasileiras, o que repercute em um ensino falho da Matemática, que não valoriza o desenvolvimento de habilidades e competências relacionadas à experimentação, observação e percepção, realização de conjecturas, desenvolvimento de argumentações convincentes, entre outras. Levando-se em conta este cenário, desenvolveu-se o LEEG, um sistema para a aprendizagem de demonstrações geométricas que tem como objetivo auxiliar um aprendiz humano na construção de demonstrações da Geometria Euclidiana Plana. O sistema foi modelado sobre uma adaptação do protocolo de aprendizagem MOSCA, desenvolvido para suportar ambientes de ensino informatizados, cuja aprendizagem é baseada na utilização de exemplos e contra-exemplos. Este protocolo propõe um ambiente de aprendizagem composto por cinco agentes, dentre os quais um deles é o aprendiz e os demais assumem papéis distintos e específicos que completam um quadro de ensino-aprendizagem consistente. A base de conhecimento do sistema, que guarda a estrutura lógica-dedutiva de todas as demonstrações que podem ser submetidas ao Aprendiz, foi implementada através do modelo de autômatos finitos com saída. A utilização de autômatos com saída na aplicação de modelagem de demonstrações dedutivas foi extremamente útil por permitir estruturar os diferentes raciocínios que levam da hipótese à tese da proposição de forma lógica, organizada e direta. As demonstrações oferecidas pelo sistema são as mesmas desenvolvidas por Euclides e referem-se aos Fundamentos da Geometria Plana. São demonstrações que priorizam e valorizam a utilização de objetos geométricos no seu desenvolvimento, fugindo das demonstrações que apelam para a simples manipulação algébrica e que não oferecem uma construção significativa do ponto de vista da Geometria. Porém, mesmo sendo consideradas apenas as demonstrações contidas em Elements, todos os diferentes raciocínios para uma mesma demonstração são aceitos pelo sistema, dando liberdade ao aprendiz no processo de construção da demonstração.
id URGS_0f474c94e024b16865f89ab0d282afdf
oai_identifier_str oai:www.lume.ufrgs.br:10183/2414
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Notare, Márcia RodriguesDiverio, Tiaraju Asmuz2007-06-06T17:21:51Z2001http://hdl.handle.net/10183/2414000273882O objetivo do presente trabalho é realizar a concepção de um sistema para a aprendizagem de demonstrações da Geometria Euclidiana Plana e a implementação de um protótipo deste sistema, denominado LEEG - Learning Environment on Euclidean Geometry, desenvolvido para validar as idéias utilizadas em sua especificação. Nos últimos anos, tem-se observado uma crescente evolução dos sistemas de ensino e aprendizagem informatizados. A preocupação com o desenvolvimento de ambientes cada vez mais eficientes, tanto do ponto de vista computacional quanto pedagógico, tem repercutido em um salto de qualidade dos software educacionais. Tais sistemas visam promover, auxiliar e motivar a aprendizagem das mais diversas áreas do conhecimento, utilizando técnicas de Inteligência Artificial para se aproximarem ao máximo do comportamento de um tutor humano que se adapte e atenda às necessidades de cada aluno. A Geometria pode ser vista sob dois aspectos principais: considerada como uma ciência que estuda as representações do plano e do espaço e considerada como uma estrutura lógica, onde a estrutura matemática é representada e tratada no mais alto nível de rigor e formalismo. Entretanto, o ensino da Geometria, nos últimos anos, abandonou quase que totalmente sua abordagem dedutiva. Demonstrações de teoremas geométricos não são mais trabalhadas na maioria das escolas brasileiras, o que repercute em um ensino falho da Matemática, que não valoriza o desenvolvimento de habilidades e competências relacionadas à experimentação, observação e percepção, realização de conjecturas, desenvolvimento de argumentações convincentes, entre outras. Levando-se em conta este cenário, desenvolveu-se o LEEG, um sistema para a aprendizagem de demonstrações geométricas que tem como objetivo auxiliar um aprendiz humano na construção de demonstrações da Geometria Euclidiana Plana. O sistema foi modelado sobre uma adaptação do protocolo de aprendizagem MOSCA, desenvolvido para suportar ambientes de ensino informatizados, cuja aprendizagem é baseada na utilização de exemplos e contra-exemplos. Este protocolo propõe um ambiente de aprendizagem composto por cinco agentes, dentre os quais um deles é o aprendiz e os demais assumem papéis distintos e específicos que completam um quadro de ensino-aprendizagem consistente. A base de conhecimento do sistema, que guarda a estrutura lógica-dedutiva de todas as demonstrações que podem ser submetidas ao Aprendiz, foi implementada através do modelo de autômatos finitos com saída. A utilização de autômatos com saída na aplicação de modelagem de demonstrações dedutivas foi extremamente útil por permitir estruturar os diferentes raciocínios que levam da hipótese à tese da proposição de forma lógica, organizada e direta. As demonstrações oferecidas pelo sistema são as mesmas desenvolvidas por Euclides e referem-se aos Fundamentos da Geometria Plana. São demonstrações que priorizam e valorizam a utilização de objetos geométricos no seu desenvolvimento, fugindo das demonstrações que apelam para a simples manipulação algébrica e que não oferecem uma construção significativa do ponto de vista da Geometria. Porém, mesmo sendo consideradas apenas as demonstrações contidas em Elements, todos os diferentes raciocínios para uma mesma demonstração são aceitos pelo sistema, dando liberdade ao aprendiz no processo de construção da demonstração.application/pdfporInformática : EducaçãoEnsino : GeometriaEnsino : MatematicaSoftware educacionalUm Sistema para aprendizagem de demonstrações dedutivas em geometria euclidianainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2001mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000273882.pdf000273882.pdfTexto completoapplication/pdf3045814http://www.lume.ufrgs.br/bitstream/10183/2414/1/000273882.pdf3aa0a8ccf5b74c82a726d108ada5267dMD51TEXT000273882.pdf.txt000273882.pdf.txtExtracted Texttext/plain242107http://www.lume.ufrgs.br/bitstream/10183/2414/2/000273882.pdf.txt8db393c600fe9696976312c0c58a3f69MD52THUMBNAIL000273882.pdf.jpg000273882.pdf.jpgGenerated Thumbnailimage/jpeg1165http://www.lume.ufrgs.br/bitstream/10183/2414/3/000273882.pdf.jpg7e7a83b349334e5537baf942de9d5a4dMD5310183/24142018-10-08 08:34:55.308oai:www.lume.ufrgs.br:10183/2414Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-08T11:34:55Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Um Sistema para aprendizagem de demonstrações dedutivas em geometria euclidiana
title Um Sistema para aprendizagem de demonstrações dedutivas em geometria euclidiana
spellingShingle Um Sistema para aprendizagem de demonstrações dedutivas em geometria euclidiana
Notare, Márcia Rodrigues
Informática : Educação
Ensino : Geometria
Ensino : Matematica
Software educacional
title_short Um Sistema para aprendizagem de demonstrações dedutivas em geometria euclidiana
title_full Um Sistema para aprendizagem de demonstrações dedutivas em geometria euclidiana
title_fullStr Um Sistema para aprendizagem de demonstrações dedutivas em geometria euclidiana
title_full_unstemmed Um Sistema para aprendizagem de demonstrações dedutivas em geometria euclidiana
title_sort Um Sistema para aprendizagem de demonstrações dedutivas em geometria euclidiana
author Notare, Márcia Rodrigues
author_facet Notare, Márcia Rodrigues
author_role author
dc.contributor.author.fl_str_mv Notare, Márcia Rodrigues
dc.contributor.advisor1.fl_str_mv Diverio, Tiaraju Asmuz
contributor_str_mv Diverio, Tiaraju Asmuz
dc.subject.por.fl_str_mv Informática : Educação
Ensino : Geometria
Ensino : Matematica
Software educacional
topic Informática : Educação
Ensino : Geometria
Ensino : Matematica
Software educacional
description O objetivo do presente trabalho é realizar a concepção de um sistema para a aprendizagem de demonstrações da Geometria Euclidiana Plana e a implementação de um protótipo deste sistema, denominado LEEG - Learning Environment on Euclidean Geometry, desenvolvido para validar as idéias utilizadas em sua especificação. Nos últimos anos, tem-se observado uma crescente evolução dos sistemas de ensino e aprendizagem informatizados. A preocupação com o desenvolvimento de ambientes cada vez mais eficientes, tanto do ponto de vista computacional quanto pedagógico, tem repercutido em um salto de qualidade dos software educacionais. Tais sistemas visam promover, auxiliar e motivar a aprendizagem das mais diversas áreas do conhecimento, utilizando técnicas de Inteligência Artificial para se aproximarem ao máximo do comportamento de um tutor humano que se adapte e atenda às necessidades de cada aluno. A Geometria pode ser vista sob dois aspectos principais: considerada como uma ciência que estuda as representações do plano e do espaço e considerada como uma estrutura lógica, onde a estrutura matemática é representada e tratada no mais alto nível de rigor e formalismo. Entretanto, o ensino da Geometria, nos últimos anos, abandonou quase que totalmente sua abordagem dedutiva. Demonstrações de teoremas geométricos não são mais trabalhadas na maioria das escolas brasileiras, o que repercute em um ensino falho da Matemática, que não valoriza o desenvolvimento de habilidades e competências relacionadas à experimentação, observação e percepção, realização de conjecturas, desenvolvimento de argumentações convincentes, entre outras. Levando-se em conta este cenário, desenvolveu-se o LEEG, um sistema para a aprendizagem de demonstrações geométricas que tem como objetivo auxiliar um aprendiz humano na construção de demonstrações da Geometria Euclidiana Plana. O sistema foi modelado sobre uma adaptação do protocolo de aprendizagem MOSCA, desenvolvido para suportar ambientes de ensino informatizados, cuja aprendizagem é baseada na utilização de exemplos e contra-exemplos. Este protocolo propõe um ambiente de aprendizagem composto por cinco agentes, dentre os quais um deles é o aprendiz e os demais assumem papéis distintos e específicos que completam um quadro de ensino-aprendizagem consistente. A base de conhecimento do sistema, que guarda a estrutura lógica-dedutiva de todas as demonstrações que podem ser submetidas ao Aprendiz, foi implementada através do modelo de autômatos finitos com saída. A utilização de autômatos com saída na aplicação de modelagem de demonstrações dedutivas foi extremamente útil por permitir estruturar os diferentes raciocínios que levam da hipótese à tese da proposição de forma lógica, organizada e direta. As demonstrações oferecidas pelo sistema são as mesmas desenvolvidas por Euclides e referem-se aos Fundamentos da Geometria Plana. São demonstrações que priorizam e valorizam a utilização de objetos geométricos no seu desenvolvimento, fugindo das demonstrações que apelam para a simples manipulação algébrica e que não oferecem uma construção significativa do ponto de vista da Geometria. Porém, mesmo sendo consideradas apenas as demonstrações contidas em Elements, todos os diferentes raciocínios para uma mesma demonstração são aceitos pelo sistema, dando liberdade ao aprendiz no processo de construção da demonstração.
publishDate 2001
dc.date.issued.fl_str_mv 2001
dc.date.accessioned.fl_str_mv 2007-06-06T17:21:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/2414
dc.identifier.nrb.pt_BR.fl_str_mv 000273882
url http://hdl.handle.net/10183/2414
identifier_str_mv 000273882
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/2414/1/000273882.pdf
http://www.lume.ufrgs.br/bitstream/10183/2414/2/000273882.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/2414/3/000273882.pdf.jpg
bitstream.checksum.fl_str_mv 3aa0a8ccf5b74c82a726d108ada5267d
8db393c600fe9696976312c0c58a3f69
7e7a83b349334e5537baf942de9d5a4d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085015739957248