Exploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learning

Detalhes bibliográficos
Autor(a) principal: Gouvêa, Rogério Almeida
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/276805
Resumo: O subgrupo mais característico das perovskitas inorgânicas de haleto metálico 2D (PIHM) é composto por perovskitas com vacâncias ordenadas ao longo da direção <111>, com a fórmula química A3B2X9 (onde A é um cátion monovalente, B é um cátion trivalente como Bi3+ ou Sb3+, e X é um ânion haleto). Devido à sua baixa toxicidade, notáveis propriedades optoeletrônicas e estabilidade, essas estruturas têm atraído considerável atenção. Elas podem potencialmente substituir as perovskitas de haleto de chumbo, que são tóxicas e sensíveis à umidade, abordando o desafio da geração e transporte limitados de portadores em PIHMs 2D com espaçadores orgânicos. Esta tese investiga teoricamente os materiais, Cs3Sb2X9 (X= Cl, Br, I) (grupo espacial: P3̅m1). Através da nossa investigação, revelamos que a mistura de haletos pode influenciar significativamente as variações de band gap e mudanças estruturais, apresentando estruturas ordenadas potenciais. Também descobrimos que, nesses materiais, as superfícies (1000) mantêm propriedades eletrônicas benéficas para fotovoltaicos, enquanto as superfícies (0001) exibem reatividade adequada para fotocatálise. O alinhamento das bandas de Cs3Sb2Br9|Cs3Sb2Cl9 e a tolerância a defeitos de Cs3Sb2I9|Cs3Sb2Br9 sugerem aplicações em LEDs e fotovoltaicos, respectivamente. Também examinamos a dopagem de metais de transição e halogênios em ambos os polimorfos de Cs3Sb2I9 (grupos espaciais: P3̅m1 e P63/mmc), a perovskita de menor band gap deste grupo. A dopagem com índio aumenta a absorção óptica e a estabilidade, e a dopagem com escândio estabiliza a rede cristalina com aumento mínimo do band gap, sugerindo métodos para melhorar o desempenho do dispositivo. Usando o modelo de aprendizado de máquina MODNet, aprimorado com um novo gerador de descritores, exploramos extensivamente o espaço químico desta classe de materiais. Isso incluiu dopagem multi-elemento, previsão da formabilidade de novos compostos e identificação de elementos estabilizadores. Nosso fluxo de trabalho de aprendizado de máquina analisou mais de 100 milhões de estruturas, identificando compostos ternários promissores, incluindo Cs3Ga2Br9 e Rb3Cr2Br9, com band gaps mais baixos do que as perovskitas comumente estudadas, e sugerindo cátions A mistos e ânions como potenciais estabilizadores.
id URGS_2a4e8cdeefb64147357712d54aad82da
oai_identifier_str oai:www.lume.ufrgs.br:10183/276805
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Gouvêa, Rogério AlmeidaSantos, Marcos José LeiteMoreira, Mario Lúcio2024-08-01T06:40:18Z2024http://hdl.handle.net/10183/276805001207226O subgrupo mais característico das perovskitas inorgânicas de haleto metálico 2D (PIHM) é composto por perovskitas com vacâncias ordenadas ao longo da direção <111>, com a fórmula química A3B2X9 (onde A é um cátion monovalente, B é um cátion trivalente como Bi3+ ou Sb3+, e X é um ânion haleto). Devido à sua baixa toxicidade, notáveis propriedades optoeletrônicas e estabilidade, essas estruturas têm atraído considerável atenção. Elas podem potencialmente substituir as perovskitas de haleto de chumbo, que são tóxicas e sensíveis à umidade, abordando o desafio da geração e transporte limitados de portadores em PIHMs 2D com espaçadores orgânicos. Esta tese investiga teoricamente os materiais, Cs3Sb2X9 (X= Cl, Br, I) (grupo espacial: P3̅m1). Através da nossa investigação, revelamos que a mistura de haletos pode influenciar significativamente as variações de band gap e mudanças estruturais, apresentando estruturas ordenadas potenciais. Também descobrimos que, nesses materiais, as superfícies (1000) mantêm propriedades eletrônicas benéficas para fotovoltaicos, enquanto as superfícies (0001) exibem reatividade adequada para fotocatálise. O alinhamento das bandas de Cs3Sb2Br9|Cs3Sb2Cl9 e a tolerância a defeitos de Cs3Sb2I9|Cs3Sb2Br9 sugerem aplicações em LEDs e fotovoltaicos, respectivamente. Também examinamos a dopagem de metais de transição e halogênios em ambos os polimorfos de Cs3Sb2I9 (grupos espaciais: P3̅m1 e P63/mmc), a perovskita de menor band gap deste grupo. A dopagem com índio aumenta a absorção óptica e a estabilidade, e a dopagem com escândio estabiliza a rede cristalina com aumento mínimo do band gap, sugerindo métodos para melhorar o desempenho do dispositivo. Usando o modelo de aprendizado de máquina MODNet, aprimorado com um novo gerador de descritores, exploramos extensivamente o espaço químico desta classe de materiais. Isso incluiu dopagem multi-elemento, previsão da formabilidade de novos compostos e identificação de elementos estabilizadores. Nosso fluxo de trabalho de aprendizado de máquina analisou mais de 100 milhões de estruturas, identificando compostos ternários promissores, incluindo Cs3Ga2Br9 e Rb3Cr2Br9, com band gaps mais baixos do que as perovskitas comumente estudadas, e sugerindo cátions A mistos e ânions como potenciais estabilizadores.The most characteristic subgroup of 2D metal halide inorganic perovskites (MHIPs) is composed of perovskites with ordered vacancies along the <111> direction, with the chemical formula A3B2X9 (where A is a monovalent cation, B is a trivalent cation such as Bi3+ or Sb3+, and X is a halide anion). Due to their low toxicity, remarkable optoelectronic properties, and long-term stability, these structures have attracted considerable attention. They may potentially replace lead halide perovskites, which are highly toxic and sensitive to moisture, while also addressing the challenge of limited carrier generation and transport in 2D MHIPs with organic spacers. This thesis delves into a comprehensive theoretical investigation of the most studied representatives of this material class, Cs3Sb2X9 (X= Cl, Br, I) (space group: P3̅m1). Through our investigation, we reveal that halide mixing can significantly influence band gap variations and structural shifts, presenting potential ordered structures. We also found that in these materials (1000) surfaces retain beneficial electronic properties for photovoltaics, while (0001) surfaces exhibit reactivity suitable for photocatalysis. Additionally, the band alignments of Cs3Sb2Br9|Cs3Sb2Cl9 interface and defect tolerance in Cs3Sb2I9|Cs3Sb2Br9 interface highlight potential applications in LEDs and photovoltaics, respectively. Expanding our study, we examined transition metal and halogen doping in both polymorphs of Cs3Sb2I9 (space groups: P3̅m1 and P63/mmc), the lowest band gap perovskite in this group. We discovered that indium doping enhances optical absorption and stability, while scandium doping stabilizes the lattice with minimal band gap increase, suggesting methods to reduce Urbach energy and improve device performance. Utilizing the capabilities of the machine learning model, Materials Optimal Descriptor Network (MODNet), augmented with a new featurizer for enhanced accuracy, we conducted an extensive exploration of the chemical space for this material class. This included multi-element doping, predicting the formability of new compounds, and identifying stabilizing elements. Our machine learning workflow screened over 100 million candidate structures, identifying promising ternary compounds including Cs3Ga2Br9 and Rb3Cr2Br9 with lower band gaps than commonly studied perovskites, and suggesting mixed A-cations and anions as potential stabilizers.application/pdfporPerovskitaTeoria do funcional de densidadeAprendizado de máquinaMetal halide inorganic perovskites2D perovskitesDensity functional theoryMachine learningExploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de QuímicaPrograma de Pós-Graduação em Ciência dos MateriaisPorto Alegre, BR-RS2024doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001207226.pdf.txt001207226.pdf.txtExtracted Texttext/plain625223http://www.lume.ufrgs.br/bitstream/10183/276805/2/001207226.pdf.txt0d5e1cd3f192751d61e4fb7c9b171fecMD52ORIGINAL001207226.pdfTexto completo (inglês)application/pdf25197939http://www.lume.ufrgs.br/bitstream/10183/276805/1/001207226.pdfb6422f2a2b24b3eb25dd4e35745eca0aMD5110183/2768052024-08-07 06:15:11.57995oai:www.lume.ufrgs.br:10183/276805Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-08-07T09:15:11Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Exploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learning
title Exploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learning
spellingShingle Exploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learning
Gouvêa, Rogério Almeida
Perovskita
Teoria do funcional de densidade
Aprendizado de máquina
Metal halide inorganic perovskites
2D perovskites
Density functional theory
Machine learning
title_short Exploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learning
title_full Exploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learning
title_fullStr Exploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learning
title_full_unstemmed Exploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learning
title_sort Exploring Cs3Sb2X9-type perovskites (X = Cl, Br, I) for optoelectronic applications : a theoretical investigation using density functional theory (DFT) and machine learning
author Gouvêa, Rogério Almeida
author_facet Gouvêa, Rogério Almeida
author_role author
dc.contributor.author.fl_str_mv Gouvêa, Rogério Almeida
dc.contributor.advisor1.fl_str_mv Santos, Marcos José Leite
dc.contributor.advisor-co1.fl_str_mv Moreira, Mario Lúcio
contributor_str_mv Santos, Marcos José Leite
Moreira, Mario Lúcio
dc.subject.por.fl_str_mv Perovskita
Teoria do funcional de densidade
Aprendizado de máquina
topic Perovskita
Teoria do funcional de densidade
Aprendizado de máquina
Metal halide inorganic perovskites
2D perovskites
Density functional theory
Machine learning
dc.subject.eng.fl_str_mv Metal halide inorganic perovskites
2D perovskites
Density functional theory
Machine learning
description O subgrupo mais característico das perovskitas inorgânicas de haleto metálico 2D (PIHM) é composto por perovskitas com vacâncias ordenadas ao longo da direção <111>, com a fórmula química A3B2X9 (onde A é um cátion monovalente, B é um cátion trivalente como Bi3+ ou Sb3+, e X é um ânion haleto). Devido à sua baixa toxicidade, notáveis propriedades optoeletrônicas e estabilidade, essas estruturas têm atraído considerável atenção. Elas podem potencialmente substituir as perovskitas de haleto de chumbo, que são tóxicas e sensíveis à umidade, abordando o desafio da geração e transporte limitados de portadores em PIHMs 2D com espaçadores orgânicos. Esta tese investiga teoricamente os materiais, Cs3Sb2X9 (X= Cl, Br, I) (grupo espacial: P3̅m1). Através da nossa investigação, revelamos que a mistura de haletos pode influenciar significativamente as variações de band gap e mudanças estruturais, apresentando estruturas ordenadas potenciais. Também descobrimos que, nesses materiais, as superfícies (1000) mantêm propriedades eletrônicas benéficas para fotovoltaicos, enquanto as superfícies (0001) exibem reatividade adequada para fotocatálise. O alinhamento das bandas de Cs3Sb2Br9|Cs3Sb2Cl9 e a tolerância a defeitos de Cs3Sb2I9|Cs3Sb2Br9 sugerem aplicações em LEDs e fotovoltaicos, respectivamente. Também examinamos a dopagem de metais de transição e halogênios em ambos os polimorfos de Cs3Sb2I9 (grupos espaciais: P3̅m1 e P63/mmc), a perovskita de menor band gap deste grupo. A dopagem com índio aumenta a absorção óptica e a estabilidade, e a dopagem com escândio estabiliza a rede cristalina com aumento mínimo do band gap, sugerindo métodos para melhorar o desempenho do dispositivo. Usando o modelo de aprendizado de máquina MODNet, aprimorado com um novo gerador de descritores, exploramos extensivamente o espaço químico desta classe de materiais. Isso incluiu dopagem multi-elemento, previsão da formabilidade de novos compostos e identificação de elementos estabilizadores. Nosso fluxo de trabalho de aprendizado de máquina analisou mais de 100 milhões de estruturas, identificando compostos ternários promissores, incluindo Cs3Ga2Br9 e Rb3Cr2Br9, com band gaps mais baixos do que as perovskitas comumente estudadas, e sugerindo cátions A mistos e ânions como potenciais estabilizadores.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-08-01T06:40:18Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/276805
dc.identifier.nrb.pt_BR.fl_str_mv 001207226
url http://hdl.handle.net/10183/276805
identifier_str_mv 001207226
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/276805/2/001207226.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/276805/1/001207226.pdf
bitstream.checksum.fl_str_mv 0d5e1cd3f192751d61e4fb7c9b171fec
b6422f2a2b24b3eb25dd4e35745eca0a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1816737096160772096