Molecular dynamics of water desalination by MoS2 nanoporous membrane

Detalhes bibliográficos
Autor(a) principal: Abal, João Pedro Kleinubing
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/274570
Resumo: Um dos maiores problemas do nosso tempo é a escassez de água, e os cenários previstos pelos principais cientistas da área sugerem que ela piorará nas próximas décadas. Os piores cenários podem ser evitados usando novas tecnologias baseadas na dessalinização da água do mar. Nos últimos anos, membranas feitas de materiais nanoporosos têm sido propostas para atingir esse objetivo. A membrana de dissulfeto de molibdênio (MoS2) é uma das sugeridas. A simulação de Dinâmica Molecular (MD) é um dos métodos mais eficazes para investigar a interação entre água, íons e nanoporos e obter conhecimento sobre como construir novos nanomateriais para dessalinização. Diferentes maneiras de comparar a influência da química e geometria dos poros foram avaliadas neste trabalho. Investigamos como os campos de pressão induzidos afetam o fluxo de água e a rejeição de sal nos nanoporos produzidos por membranas MoS2. O resultado entra em conflito com os cálculos de mecânica dos fluidos contínuos realizados em microfiltros. Também lançamos luz sobre a competição entre a carga e o tamanho dos nanoporos. A capacidade da água de fluir através do nanoporo em qualquer orientação angular é limitada pela forte interação dipolar entre os átomos do nanoporo e as moléculas de água. Além disso, investigamos o fluxo de água através de membranas feitas de multicamadas de dissulfeto de molibdênio com vários comprimentos e diâmetros de nanoporos. Os dados mostram que a dinâmica da água é mais lenta quando comparada com a dinâmica em membranas multicamadas de grafeno e nanotubos de carbono sem atrito, o que explicamos em termos de um mecanismo de ancoragem que observamos entre as camadas. Esses estudos juntos contribuem para aprofundar o entendimento de nanomateriais e seu uso como avançadas tecnologias de dessalinização, se colocando na direção da mitigação do desafio global de escassez de água.
id URGS_2dfc3976c0ab6f34d7dcc9a2a8c742dc
oai_identifier_str oai:www.lume.ufrgs.br:10183/274570
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Abal, João Pedro KleinubingBarbosa, Marcia Cristina Bernardes2024-04-11T06:25:29Z2024http://hdl.handle.net/10183/274570001199958Um dos maiores problemas do nosso tempo é a escassez de água, e os cenários previstos pelos principais cientistas da área sugerem que ela piorará nas próximas décadas. Os piores cenários podem ser evitados usando novas tecnologias baseadas na dessalinização da água do mar. Nos últimos anos, membranas feitas de materiais nanoporosos têm sido propostas para atingir esse objetivo. A membrana de dissulfeto de molibdênio (MoS2) é uma das sugeridas. A simulação de Dinâmica Molecular (MD) é um dos métodos mais eficazes para investigar a interação entre água, íons e nanoporos e obter conhecimento sobre como construir novos nanomateriais para dessalinização. Diferentes maneiras de comparar a influência da química e geometria dos poros foram avaliadas neste trabalho. Investigamos como os campos de pressão induzidos afetam o fluxo de água e a rejeição de sal nos nanoporos produzidos por membranas MoS2. O resultado entra em conflito com os cálculos de mecânica dos fluidos contínuos realizados em microfiltros. Também lançamos luz sobre a competição entre a carga e o tamanho dos nanoporos. A capacidade da água de fluir através do nanoporo em qualquer orientação angular é limitada pela forte interação dipolar entre os átomos do nanoporo e as moléculas de água. Além disso, investigamos o fluxo de água através de membranas feitas de multicamadas de dissulfeto de molibdênio com vários comprimentos e diâmetros de nanoporos. Os dados mostram que a dinâmica da água é mais lenta quando comparada com a dinâmica em membranas multicamadas de grafeno e nanotubos de carbono sem atrito, o que explicamos em termos de um mecanismo de ancoragem que observamos entre as camadas. Esses estudos juntos contribuem para aprofundar o entendimento de nanomateriais e seu uso como avançadas tecnologias de dessalinização, se colocando na direção da mitigação do desafio global de escassez de água.One of the biggest issues of our time is water shortage, and scenarios anticipated by lead scientists in the field suggest that it will get worse over the coming decades. The worst-case scenarios can be avoided using new technology based on seawater desalination. In recent years, membranes made of nanoporous materials have been proposed to achieve this purpose. The molybdenum disulfide (MoS2) membrane is one of the ones suggested. The traditional Molecular Dynamics (MD) simulation is one of the most effective methods to investigate the interplay between water, ions, and nanopores and to get knowledge about how to build novel nanomaterials for desalination. Different ways to compare the influence of pore chemistry and geometry were evaluated in this work. We investigate how the induced pressure fields affect the water flow and salt rejection in the MoS2 membrane-produced nanopores. The result conflicts with continuous fluid mechanics calculations performed on microfilters. We also shed light on the competition between charge and nanopore size. The water’s ability to flow through the nanopore in any angular orientation is constrained by the strong dipole interaction between the nanopore atoms and water molecules. In addition, we investigated the water flux through membranes made of multilayered nanoporous molybdenum disulfide with various nanopore lengths and diameters. The data also show that the dynamics of water are slower than those of multilayer graphene membranes and frictionless carbon nanotubes, which we explain in terms of an anchor mechanism that we have observed in between layers. These investigations collectively contribute to a deeper understanding of nanomaterials in advancing desalination technologies, addressing the global challenge of water scarcity.application/pdfengNanotecnologiaNanofluídicaDessalinizaçãoDinâmica molecularNanotechnologyNanofluidicsWater DesalinationMolecular DynamicsMolecular dynamics of water desalination by MoS2 nanoporous membraneDinâmica molecular da dessalinização da água por membrana nanoporosa de MoS2 info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de FísicaPrograma de Pós-Graduação em FísicaPorto Alegre, BR-RS2024doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001199958.pdf.txt001199958.pdf.txtExtracted Texttext/plain393222http://www.lume.ufrgs.br/bitstream/10183/274570/2/001199958.pdf.txtc662df7c0fb13146ce988e82477915a5MD52ORIGINAL001199958.pdfTexto completoapplication/pdf37903021http://www.lume.ufrgs.br/bitstream/10183/274570/1/001199958.pdf5bc4c86f3722319edde5de065c2e0d85MD5110183/2745702024-04-12 06:21:16.087918oai:www.lume.ufrgs.br:10183/274570Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-04-12T09:21:16Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Molecular dynamics of water desalination by MoS2 nanoporous membrane
dc.title.alternative.pt.fl_str_mv Dinâmica molecular da dessalinização da água por membrana nanoporosa de MoS2
title Molecular dynamics of water desalination by MoS2 nanoporous membrane
spellingShingle Molecular dynamics of water desalination by MoS2 nanoporous membrane
Abal, João Pedro Kleinubing
Nanotecnologia
Nanofluídica
Dessalinização
Dinâmica molecular
Nanotechnology
Nanofluidics
Water Desalination
Molecular Dynamics
title_short Molecular dynamics of water desalination by MoS2 nanoporous membrane
title_full Molecular dynamics of water desalination by MoS2 nanoporous membrane
title_fullStr Molecular dynamics of water desalination by MoS2 nanoporous membrane
title_full_unstemmed Molecular dynamics of water desalination by MoS2 nanoporous membrane
title_sort Molecular dynamics of water desalination by MoS2 nanoporous membrane
author Abal, João Pedro Kleinubing
author_facet Abal, João Pedro Kleinubing
author_role author
dc.contributor.author.fl_str_mv Abal, João Pedro Kleinubing
dc.contributor.advisor1.fl_str_mv Barbosa, Marcia Cristina Bernardes
contributor_str_mv Barbosa, Marcia Cristina Bernardes
dc.subject.por.fl_str_mv Nanotecnologia
Nanofluídica
Dessalinização
Dinâmica molecular
topic Nanotecnologia
Nanofluídica
Dessalinização
Dinâmica molecular
Nanotechnology
Nanofluidics
Water Desalination
Molecular Dynamics
dc.subject.eng.fl_str_mv Nanotechnology
Nanofluidics
Water Desalination
Molecular Dynamics
description Um dos maiores problemas do nosso tempo é a escassez de água, e os cenários previstos pelos principais cientistas da área sugerem que ela piorará nas próximas décadas. Os piores cenários podem ser evitados usando novas tecnologias baseadas na dessalinização da água do mar. Nos últimos anos, membranas feitas de materiais nanoporosos têm sido propostas para atingir esse objetivo. A membrana de dissulfeto de molibdênio (MoS2) é uma das sugeridas. A simulação de Dinâmica Molecular (MD) é um dos métodos mais eficazes para investigar a interação entre água, íons e nanoporos e obter conhecimento sobre como construir novos nanomateriais para dessalinização. Diferentes maneiras de comparar a influência da química e geometria dos poros foram avaliadas neste trabalho. Investigamos como os campos de pressão induzidos afetam o fluxo de água e a rejeição de sal nos nanoporos produzidos por membranas MoS2. O resultado entra em conflito com os cálculos de mecânica dos fluidos contínuos realizados em microfiltros. Também lançamos luz sobre a competição entre a carga e o tamanho dos nanoporos. A capacidade da água de fluir através do nanoporo em qualquer orientação angular é limitada pela forte interação dipolar entre os átomos do nanoporo e as moléculas de água. Além disso, investigamos o fluxo de água através de membranas feitas de multicamadas de dissulfeto de molibdênio com vários comprimentos e diâmetros de nanoporos. Os dados mostram que a dinâmica da água é mais lenta quando comparada com a dinâmica em membranas multicamadas de grafeno e nanotubos de carbono sem atrito, o que explicamos em termos de um mecanismo de ancoragem que observamos entre as camadas. Esses estudos juntos contribuem para aprofundar o entendimento de nanomateriais e seu uso como avançadas tecnologias de dessalinização, se colocando na direção da mitigação do desafio global de escassez de água.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-04-11T06:25:29Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/274570
dc.identifier.nrb.pt_BR.fl_str_mv 001199958
url http://hdl.handle.net/10183/274570
identifier_str_mv 001199958
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/274570/2/001199958.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/274570/1/001199958.pdf
bitstream.checksum.fl_str_mv c662df7c0fb13146ce988e82477915a5
5bc4c86f3722319edde5de065c2e0d85
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085642211688448