Estudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/188639 |
Resumo: | Introdução: Inúmeras evidências já demonstraram a eficácia de uma variedade de modalidades de psicoterapia no tratamento de uma série de transtornos psicológicos e psiquiátricos. Quando se observa a produção de pesquisa em psicoterapias na atualidade, verifica-se que a compreensão dos aspectos que contribuem para a mudança continua a ser um desafio. Objetivos: Explorar de diferentes formas e perspectivas o processo terapêutico de uma Psicoterapia Psicanalítica de Longo Prazo através do Psychotherapy Process Q-Set (PQS) com vistas a levantar hipóteses sobre os mecanismos de ação terapêutica. Método: Trata-se de um estudo de caso sistemático. Os participantes foram uma paciente de 67 anos portadora de doenças crônicas (lupus, fibromialgia), que iniciou psicoterapia psicanalítica devido a problemas familiares e queixas somáticas. O tratamento foi conduzido por uma terapeuta experiente totalizando 30 meses e 120 sessões gravadas em vídeo e analisadas alternadamente (n=62) com o PQS. A concordância entre os juízes apresentou média de 0,71 (correlação de Pearson). Através de análise fatorial do tipo Q, foram identificadas as estruturas de interação desta díade. Utilizou-se o algoritmo random forest (machine learning) para identificar o melhor modelo preditivo de desconforto subjetivo, aferido através do Outcome Questionnaire (OQ-45). Resultados: Avaliação diagnóstica indicou traços de transtorno da personalidade dependente e obsessivo-compulsiva bem como transtorno de sintomas somáticos. Medidas de resultado demonstraram melhora em relação à sintomatologia. Foram identificadas 4 estruturas de interação que mostraram-se não lineares e mais ou menos salientes em diferentes etapas do tratamento. Além disso, mostraram validade clínica. Em relação aos protótipos, encontrou-se maior adesão ao protótipo de função reflexiva. Foi encontrado um modelo com Area Under the Receiver Operating Characteristic Curve de 0.725, sensibilidade de 79%, especificidade de 62% e acurácia de 70.5% que indicou uma combinação de 6 variáveis representativas predominantemente de fatores específicos da técnica empregada como os preditores mais importantes de níveis de desconforto subjetivo. Conclusão: Em relação à personalidade, a paciente mostrou uma redução do funcionamento operatório, porém um incremento nos traços depressivos. Embora, haja uma piora aparente em relação aos níveis mais elevados de transtorno e síndromes, verificou-se a presença de níveis mais altos de indicadores de força do ego. As estruturas de interação identificadas são representativas tanto dos chamados fatores comuns às terapias (aliança terapêutica) como de fatores específicos da abordagem empregada (foco no afeto). Identificou-se que algumas das interações são independentes e outras relacionam-se ao longo do tempo. A adesão aos protótipos ideais corroborou estudos prévios que já haviam detectado que os tratamentos não são um reflexo perfeito das técnicas prescritas. A maior adesão ao protótipo de função reflexiva (construto que operacionaliza o conceito de mentalização) dá suporte à premissa de que a mentalização é um processo comum às terapias. Machine learning mostrou ser uma ferramenta inovadora e promissora no contexto da pesquisa de processo em psicoterapia. A partir dos dados obtidos, pode-se levantar hipóteses acerca das características e processos particulares da dupla em questão, bem como de processos mais gerais, relativos ao fenômeno psicoterapêutico e não exclusivos a este caso em particular. |
id |
URGS_3032d751ecce410a9c7a6d44f7da8718 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/188639 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Laskoski, Pricilla BragaEizirik, Claudio LaksSerralta, Fernanda Barcellos2019-02-09T02:34:38Z2017http://hdl.handle.net/10183/188639001082796Introdução: Inúmeras evidências já demonstraram a eficácia de uma variedade de modalidades de psicoterapia no tratamento de uma série de transtornos psicológicos e psiquiátricos. Quando se observa a produção de pesquisa em psicoterapias na atualidade, verifica-se que a compreensão dos aspectos que contribuem para a mudança continua a ser um desafio. Objetivos: Explorar de diferentes formas e perspectivas o processo terapêutico de uma Psicoterapia Psicanalítica de Longo Prazo através do Psychotherapy Process Q-Set (PQS) com vistas a levantar hipóteses sobre os mecanismos de ação terapêutica. Método: Trata-se de um estudo de caso sistemático. Os participantes foram uma paciente de 67 anos portadora de doenças crônicas (lupus, fibromialgia), que iniciou psicoterapia psicanalítica devido a problemas familiares e queixas somáticas. O tratamento foi conduzido por uma terapeuta experiente totalizando 30 meses e 120 sessões gravadas em vídeo e analisadas alternadamente (n=62) com o PQS. A concordância entre os juízes apresentou média de 0,71 (correlação de Pearson). Através de análise fatorial do tipo Q, foram identificadas as estruturas de interação desta díade. Utilizou-se o algoritmo random forest (machine learning) para identificar o melhor modelo preditivo de desconforto subjetivo, aferido através do Outcome Questionnaire (OQ-45). Resultados: Avaliação diagnóstica indicou traços de transtorno da personalidade dependente e obsessivo-compulsiva bem como transtorno de sintomas somáticos. Medidas de resultado demonstraram melhora em relação à sintomatologia. Foram identificadas 4 estruturas de interação que mostraram-se não lineares e mais ou menos salientes em diferentes etapas do tratamento. Além disso, mostraram validade clínica. Em relação aos protótipos, encontrou-se maior adesão ao protótipo de função reflexiva. Foi encontrado um modelo com Area Under the Receiver Operating Characteristic Curve de 0.725, sensibilidade de 79%, especificidade de 62% e acurácia de 70.5% que indicou uma combinação de 6 variáveis representativas predominantemente de fatores específicos da técnica empregada como os preditores mais importantes de níveis de desconforto subjetivo. Conclusão: Em relação à personalidade, a paciente mostrou uma redução do funcionamento operatório, porém um incremento nos traços depressivos. Embora, haja uma piora aparente em relação aos níveis mais elevados de transtorno e síndromes, verificou-se a presença de níveis mais altos de indicadores de força do ego. As estruturas de interação identificadas são representativas tanto dos chamados fatores comuns às terapias (aliança terapêutica) como de fatores específicos da abordagem empregada (foco no afeto). Identificou-se que algumas das interações são independentes e outras relacionam-se ao longo do tempo. A adesão aos protótipos ideais corroborou estudos prévios que já haviam detectado que os tratamentos não são um reflexo perfeito das técnicas prescritas. A maior adesão ao protótipo de função reflexiva (construto que operacionaliza o conceito de mentalização) dá suporte à premissa de que a mentalização é um processo comum às terapias. Machine learning mostrou ser uma ferramenta inovadora e promissora no contexto da pesquisa de processo em psicoterapia. A partir dos dados obtidos, pode-se levantar hipóteses acerca das características e processos particulares da dupla em questão, bem como de processos mais gerais, relativos ao fenômeno psicoterapêutico e não exclusivos a este caso em particular.Introduction: Many studies have shown consistent evidence of efficacy and effectiveness of psychodynamic psychotherapy in a wide range of disorders. However, an understanding of aspects that contribute to the psychological change in psychotherapy remains a challenge. Objectives: To examine under different perspectives the therapeutic process of a long-term psychoanalytic psychotherapy through the Psychotherapy Process Q-Set (PQS) in order to to raise hypotheses about the mechanisms of therapeutic action. Methods: this is a systematic case study. The participants were a 67-year-old female patient with chronic diseases (lupus, fibromyalgia) who initiated psychoanalytic psychotherapy due to family problematic relationships and somatic complaints. The treatment was conducted by an experienced therapist reaching 30 months and 120 videotaped sessions analyzed alternately (n = 62) with PQS. The interrater reliability between the judges ranged from 0.60 to 0.90 with a mean of r = 0.71 ( earson’s correlation). he interaction structures were obtain through a principal-components exploratory factor analysis. A random forest algorithm (machine learning) was performed to find the best model predictive of high levels of patient distress, which was assessed by Outcome Questionnaire (OQ-45). Results: diagnostic evaluation indicated traits of dependent and obsessive-compulsive personality disorder as well as somatic symptom disorder (concrete and operative functioning mode). Outcome measures demonstrated improvement in symptomatology. Four interaction structures were identified that were non-linear and more or less salient in different treatment stages. In addition, they showed clinical validity. In relation to the prototypes, we found greater adherence to the reflective functioning prototype. The best random forest model differentiated high distress from low levels of distress with an AUC of 0.725, sensitivity of 79%, specificity of 62% and balanced accuracy of 70.5%. It indicated a combination of 6 variables predominantly representative of specific techniques used as the most important predictors of levels of distress. Conclusion: Regarding the personality, the patient showed a reduction in the operative functioning, but an increase in the depressive traits. Although there is an apparent worsening with regard to higher levels of disorder and presence of syndromes, there is symptomatic improvement and higher levels of ego force indicators. The interaction structures identified seem to be structures that represent, respectively, a specific factor of the approach employed (focus on affect) and a common factor (therapeutic alliance) to all therapies. In addition, some IS are independent and others related in time. Prototypes adherence are consistent with previous studies showing that psychotherapeutic process do not use to present “pure” models over time. he greater edherence to the reflective functioning prototype (construct that operationalizes the concept of mentalization) supports the premise that mentalization is a common process across therapies. Machine learning has proved to be an innovative and promising tool in the context of process research in psychotherapy. From the obtained data, it is possible to raise hypotheses about the characteristics and particular processes of the dyad patient-therapist in question, as well as of more general processes, related to the psychotherapeutic phenomenon and not exclusive to this particular case.application/pdfporTerapia psicanaliticaPersonalidadeEvolução clínicaRelatos de casosPsicoterapia psicodinâmicaTerapia cognitivo-comportamentalAprendizado de máquinaPsychoanalytic psychotherapyMachine learningPsychotherapy prototypesInteraction structuresOutcome researchProcess researchPsychotherapy researchPsychotherapy processEstudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulFaculdade de MedicinaPrograma de Pós-Graduação em Psiquiatria e Ciências do ComportamentoPorto Alegre, BR-RS2017doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001082796.pdf.txt001082796.pdf.txtExtracted Texttext/plain293448http://www.lume.ufrgs.br/bitstream/10183/188639/2/001082796.pdf.txtf73357120c33bb9b442abe1d183503adMD52ORIGINAL001082796.pdfTexto completoapplication/pdf2430961http://www.lume.ufrgs.br/bitstream/10183/188639/1/001082796.pdf748785cc283fa14f614a79796364a3c0MD5110183/1886392023-09-20 03:33:56.24142oai:www.lume.ufrgs.br:10183/188639Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532023-09-20T06:33:56Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Estudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazo |
title |
Estudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazo |
spellingShingle |
Estudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazo Laskoski, Pricilla Braga Terapia psicanalitica Personalidade Evolução clínica Relatos de casos Psicoterapia psicodinâmica Terapia cognitivo-comportamental Aprendizado de máquina Psychoanalytic psychotherapy Machine learning Psychotherapy prototypes Interaction structures Outcome research Process research Psychotherapy research Psychotherapy process |
title_short |
Estudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazo |
title_full |
Estudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazo |
title_fullStr |
Estudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazo |
title_full_unstemmed |
Estudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazo |
title_sort |
Estudo sobre o processo terapêutico de uma psicoterapia psicanalítica de longo prazo |
author |
Laskoski, Pricilla Braga |
author_facet |
Laskoski, Pricilla Braga |
author_role |
author |
dc.contributor.author.fl_str_mv |
Laskoski, Pricilla Braga |
dc.contributor.advisor1.fl_str_mv |
Eizirik, Claudio Laks |
dc.contributor.advisor-co1.fl_str_mv |
Serralta, Fernanda Barcellos |
contributor_str_mv |
Eizirik, Claudio Laks Serralta, Fernanda Barcellos |
dc.subject.por.fl_str_mv |
Terapia psicanalitica Personalidade Evolução clínica Relatos de casos Psicoterapia psicodinâmica Terapia cognitivo-comportamental Aprendizado de máquina |
topic |
Terapia psicanalitica Personalidade Evolução clínica Relatos de casos Psicoterapia psicodinâmica Terapia cognitivo-comportamental Aprendizado de máquina Psychoanalytic psychotherapy Machine learning Psychotherapy prototypes Interaction structures Outcome research Process research Psychotherapy research Psychotherapy process |
dc.subject.eng.fl_str_mv |
Psychoanalytic psychotherapy Machine learning Psychotherapy prototypes Interaction structures Outcome research Process research Psychotherapy research Psychotherapy process |
description |
Introdução: Inúmeras evidências já demonstraram a eficácia de uma variedade de modalidades de psicoterapia no tratamento de uma série de transtornos psicológicos e psiquiátricos. Quando se observa a produção de pesquisa em psicoterapias na atualidade, verifica-se que a compreensão dos aspectos que contribuem para a mudança continua a ser um desafio. Objetivos: Explorar de diferentes formas e perspectivas o processo terapêutico de uma Psicoterapia Psicanalítica de Longo Prazo através do Psychotherapy Process Q-Set (PQS) com vistas a levantar hipóteses sobre os mecanismos de ação terapêutica. Método: Trata-se de um estudo de caso sistemático. Os participantes foram uma paciente de 67 anos portadora de doenças crônicas (lupus, fibromialgia), que iniciou psicoterapia psicanalítica devido a problemas familiares e queixas somáticas. O tratamento foi conduzido por uma terapeuta experiente totalizando 30 meses e 120 sessões gravadas em vídeo e analisadas alternadamente (n=62) com o PQS. A concordância entre os juízes apresentou média de 0,71 (correlação de Pearson). Através de análise fatorial do tipo Q, foram identificadas as estruturas de interação desta díade. Utilizou-se o algoritmo random forest (machine learning) para identificar o melhor modelo preditivo de desconforto subjetivo, aferido através do Outcome Questionnaire (OQ-45). Resultados: Avaliação diagnóstica indicou traços de transtorno da personalidade dependente e obsessivo-compulsiva bem como transtorno de sintomas somáticos. Medidas de resultado demonstraram melhora em relação à sintomatologia. Foram identificadas 4 estruturas de interação que mostraram-se não lineares e mais ou menos salientes em diferentes etapas do tratamento. Além disso, mostraram validade clínica. Em relação aos protótipos, encontrou-se maior adesão ao protótipo de função reflexiva. Foi encontrado um modelo com Area Under the Receiver Operating Characteristic Curve de 0.725, sensibilidade de 79%, especificidade de 62% e acurácia de 70.5% que indicou uma combinação de 6 variáveis representativas predominantemente de fatores específicos da técnica empregada como os preditores mais importantes de níveis de desconforto subjetivo. Conclusão: Em relação à personalidade, a paciente mostrou uma redução do funcionamento operatório, porém um incremento nos traços depressivos. Embora, haja uma piora aparente em relação aos níveis mais elevados de transtorno e síndromes, verificou-se a presença de níveis mais altos de indicadores de força do ego. As estruturas de interação identificadas são representativas tanto dos chamados fatores comuns às terapias (aliança terapêutica) como de fatores específicos da abordagem empregada (foco no afeto). Identificou-se que algumas das interações são independentes e outras relacionam-se ao longo do tempo. A adesão aos protótipos ideais corroborou estudos prévios que já haviam detectado que os tratamentos não são um reflexo perfeito das técnicas prescritas. A maior adesão ao protótipo de função reflexiva (construto que operacionaliza o conceito de mentalização) dá suporte à premissa de que a mentalização é um processo comum às terapias. Machine learning mostrou ser uma ferramenta inovadora e promissora no contexto da pesquisa de processo em psicoterapia. A partir dos dados obtidos, pode-se levantar hipóteses acerca das características e processos particulares da dupla em questão, bem como de processos mais gerais, relativos ao fenômeno psicoterapêutico e não exclusivos a este caso em particular. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017 |
dc.date.accessioned.fl_str_mv |
2019-02-09T02:34:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/188639 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001082796 |
url |
http://hdl.handle.net/10183/188639 |
identifier_str_mv |
001082796 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/188639/2/001082796.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/188639/1/001082796.pdf |
bitstream.checksum.fl_str_mv |
f73357120c33bb9b442abe1d183503ad 748785cc283fa14f614a79796364a3c0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1810085466788069376 |