Desenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosana

Detalhes bibliográficos
Autor(a) principal: Haas, Sandra Elisa
Data de Publicação: 2012
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/60368
Resumo: Objetivos: Sistemas nanoparticulados são úteis para modular a farmacocinética de substâncias. Nesse contexto, os objetivos deste trabalho foram o desenvolvimento de um sistema nanovesicular (NV) inovador auto-organizado de quitosana e lecitina, contendo miristato de isopropila (IPM) como núcleo oleoso capaz de alterar a farmacocinética da clozapina (CZP) e do ácido valpróico (VPA). Métodos: NV foram preparadas através da mistura, utilizando Ultraturrax, de uma solução etanólica contendo Lipoid S45® e IPM em uma solução aquosa de quitosana. As concentrações de quitosana (4 ou 8 mg/ml), IPM (10 e 20 mg/mL), Lipoid S45® (4 e 8 mg/ml) foram otimizadas através de um fatorial 23 que avaliou o diâmetro, potencial zeta, pH, viscosidade e análises de retroespalhamento de luz (BS) como respostas. Às nanovesículas do sistema otimizado pela análise fatorial foi incluído a CZP. A caracterização físico-química dessa formulação (NV-CZP) foi conduzida avaliandose os mesmos parâmetros citados acima. A farmacocinética dessa formulação foi avaliada em ratos Wistar pela via i.v (5 mg/kg, CZP livre) e oral (10 mg/kg, CZP livre e NV-CZP). Para a quantificação da CZP nas amostras de plasma obtidas em tempos pré-determinados após adminsitração das formulações um método analítico por CL-EM/EM foi desenvolvido e validado. O VPA também foi encapsulado nessas nanovesículas, nesse caso em substituição ao IPM, formando NV-VPA que foram caracterizadas físico-quimicamente. Os perfis cinéticos dessa formulação foram avaliados para os seguintes grupos de animais: VPA, ratos anestesiados (G1, 4 mg/kg) e não-anestesiados (G2, 4 mg/kg), VPA-NV (G3, 2 mg/kg), oral 4 mg/kg VPA (G4) e VPA-NV (G5), além da administração intra-traqueal (i.t.) de 4 mg/kg (VPA, G6 e VPA-NV, G7). Avaliação não-compartimental e compartimental dos perfis individuais de concentração plasmática da CZP e VPA foi realizada utilizando Excel® 2003 e Scientist® 2.0, respectivamente. Resultados: Os diâmetros das partículas no planejamento fatorial variaram de 0.348 a 1.5 μm. O diâmetro foi dependente da proporção de quitosana, IPM e lecitina utilizados nas formulações O potencial zeta positivo (+41.3 a +50 mV) foi influenciado principalmente pela concentração de quitosana. O pH de todas as formulações foi ácido. Os valores de viscosidade sofreram influência das concentrações de quitosana e IPM. A formulação otimizada (quitosana 4 mg/mL; IPM 10 mg/mL e Lipoid S45® 8 mg/mL) foi escolhida para encapsular a CZP. As nanovesículas de CZP (CZP-NV 1 mg/mL) e NV brancas apresentaram, respectivamente, tamanhos médios de 181 ± 3 nm e 470 ± 2 nm, pH ácido, potencial zeta positivo, índice de polidispersão abaixo de 0.3 e doseamento da CZP próximo a 100%. Após a encapsulação da CZP em NV, a biodisponibilidade oral foi 24%, duas vezes superior a biodisponibilidade da CZP livre (9%). Aumento na meia-vida foi observado para a CZP-NV (4.32 ± 1.33 h) em relação à CZP livre (2.28 ± 0.69 h), devido a uma diminuição da depuração plasmática. No estudo com VPA, o tamanho médio, potencial zeta e pH para VPA-NV (5 mg/mL) e NV brancas foram 333 ± 1.5 nm e 131 ±1 nm; 25.6 ± 0.8 mV e +13.4 ± 1.7 mV; 2.69 ± 0.02 e 2.71 ± 0.08, respectivamente. Os perfis plasmáticos dos grupos G1, G2, G3 declinaram de forma bi-exponencial. A depuração plasmática e o volume de distribuição no steady-state do G5 diminuíram significativamente e na mesma proporção em relação ao G4. A meia-vida não se alterou para o G4 e G5. O pico de concentração plasmática (Cmax) foi significativamente maior para G7 do que para G6 e o tempo para alcançar o pico (tmax) foi menor para o G6. A depuração plasmática e o volume de distribuição no steady-state do G7 diminuíram significativamente e na mesma proporção em relação ao grupo G6, não implicando em alteração na meia-vida do fármaco. Conclusões: Neste trabalho, um novo nanossistema vesicular foi desenvolvido e biologicamente avaliado. As nanovesículas mostraram-se úteis para melhor os parâmetros farmacocinéticos do VPA e da CZP, principalmente a biodisponibilidade oral, sendo promissoras para diferentes aplicações biológicas e tecnológicas.
id URGS_362e7bc4777e6d3c8af99b7e69709d81
oai_identifier_str oai:www.lume.ufrgs.br:10183/60368
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Haas, Sandra ElisaDalla Costa, Teresa Cristina TavaresGuterres, Silvia Stanisçuaski2012-10-25T01:36:10Z2012http://hdl.handle.net/10183/60368000860558Objetivos: Sistemas nanoparticulados são úteis para modular a farmacocinética de substâncias. Nesse contexto, os objetivos deste trabalho foram o desenvolvimento de um sistema nanovesicular (NV) inovador auto-organizado de quitosana e lecitina, contendo miristato de isopropila (IPM) como núcleo oleoso capaz de alterar a farmacocinética da clozapina (CZP) e do ácido valpróico (VPA). Métodos: NV foram preparadas através da mistura, utilizando Ultraturrax, de uma solução etanólica contendo Lipoid S45® e IPM em uma solução aquosa de quitosana. As concentrações de quitosana (4 ou 8 mg/ml), IPM (10 e 20 mg/mL), Lipoid S45® (4 e 8 mg/ml) foram otimizadas através de um fatorial 23 que avaliou o diâmetro, potencial zeta, pH, viscosidade e análises de retroespalhamento de luz (BS) como respostas. Às nanovesículas do sistema otimizado pela análise fatorial foi incluído a CZP. A caracterização físico-química dessa formulação (NV-CZP) foi conduzida avaliandose os mesmos parâmetros citados acima. A farmacocinética dessa formulação foi avaliada em ratos Wistar pela via i.v (5 mg/kg, CZP livre) e oral (10 mg/kg, CZP livre e NV-CZP). Para a quantificação da CZP nas amostras de plasma obtidas em tempos pré-determinados após adminsitração das formulações um método analítico por CL-EM/EM foi desenvolvido e validado. O VPA também foi encapsulado nessas nanovesículas, nesse caso em substituição ao IPM, formando NV-VPA que foram caracterizadas físico-quimicamente. Os perfis cinéticos dessa formulação foram avaliados para os seguintes grupos de animais: VPA, ratos anestesiados (G1, 4 mg/kg) e não-anestesiados (G2, 4 mg/kg), VPA-NV (G3, 2 mg/kg), oral 4 mg/kg VPA (G4) e VPA-NV (G5), além da administração intra-traqueal (i.t.) de 4 mg/kg (VPA, G6 e VPA-NV, G7). Avaliação não-compartimental e compartimental dos perfis individuais de concentração plasmática da CZP e VPA foi realizada utilizando Excel® 2003 e Scientist® 2.0, respectivamente. Resultados: Os diâmetros das partículas no planejamento fatorial variaram de 0.348 a 1.5 μm. O diâmetro foi dependente da proporção de quitosana, IPM e lecitina utilizados nas formulações O potencial zeta positivo (+41.3 a +50 mV) foi influenciado principalmente pela concentração de quitosana. O pH de todas as formulações foi ácido. Os valores de viscosidade sofreram influência das concentrações de quitosana e IPM. A formulação otimizada (quitosana 4 mg/mL; IPM 10 mg/mL e Lipoid S45® 8 mg/mL) foi escolhida para encapsular a CZP. As nanovesículas de CZP (CZP-NV 1 mg/mL) e NV brancas apresentaram, respectivamente, tamanhos médios de 181 ± 3 nm e 470 ± 2 nm, pH ácido, potencial zeta positivo, índice de polidispersão abaixo de 0.3 e doseamento da CZP próximo a 100%. Após a encapsulação da CZP em NV, a biodisponibilidade oral foi 24%, duas vezes superior a biodisponibilidade da CZP livre (9%). Aumento na meia-vida foi observado para a CZP-NV (4.32 ± 1.33 h) em relação à CZP livre (2.28 ± 0.69 h), devido a uma diminuição da depuração plasmática. No estudo com VPA, o tamanho médio, potencial zeta e pH para VPA-NV (5 mg/mL) e NV brancas foram 333 ± 1.5 nm e 131 ±1 nm; 25.6 ± 0.8 mV e +13.4 ± 1.7 mV; 2.69 ± 0.02 e 2.71 ± 0.08, respectivamente. Os perfis plasmáticos dos grupos G1, G2, G3 declinaram de forma bi-exponencial. A depuração plasmática e o volume de distribuição no steady-state do G5 diminuíram significativamente e na mesma proporção em relação ao G4. A meia-vida não se alterou para o G4 e G5. O pico de concentração plasmática (Cmax) foi significativamente maior para G7 do que para G6 e o tempo para alcançar o pico (tmax) foi menor para o G6. A depuração plasmática e o volume de distribuição no steady-state do G7 diminuíram significativamente e na mesma proporção em relação ao grupo G6, não implicando em alteração na meia-vida do fármaco. Conclusões: Neste trabalho, um novo nanossistema vesicular foi desenvolvido e biologicamente avaliado. As nanovesículas mostraram-se úteis para melhor os parâmetros farmacocinéticos do VPA e da CZP, principalmente a biodisponibilidade oral, sendo promissoras para diferentes aplicações biológicas e tecnológicas.Objectives: Nanoparticles (NP) are useful to modulate the pharmacokinetics (PK) of drugs. The aim of this study was to develop innovative self-assembly nanovesicles (NV) constituted of chitosan and lecithin with isopropyl myristate (IPM) as oil core, able to modify the PK plasma profile of clozapine (CZP) and valproic acid (VPA). Methods: The NV were obtained by injecting 4 mL of an ethanolic phase containing Lipoid S45® and IPM into 46 ml of a chitosan aqueous solution followed by Ultraturrax homogenization. The concentrations of chitosan (4 and 8 mg/mL), IPM (10 e 20 mg/mL) and Lipoid S45® (4 and 8 mg/mL) were optimized using a 23 factorial design. The responses evaluated were particle size, zeta potential, pH, viscosity and backscattering (BS) analysis. The optimized formulation (F2) was choosed to encapsulate CZP. The PK in rats was evaluated after i.v. (5 mg/kg, free CZP) and oral (10 mg/kg, free and NV-CZP) administration. A LC-MS/MS method was developed and validated for CZP quantification in rat plasma. VPA was also incorporate into the NV in this case replacing IPM by the drug. The NV-VPA physicochemical characterization and plasma PK was evaluated. The groups for PK investigation were: VPA unconscious rat (G1, 4 mg/kg) and conscious rat (G2, 4 mg/kg), VPA-NV (G3, 2 mg/kg), oral 4 mg/kg dosing of VPA (G4) and VPA-NV (G5) and intratracheal (i.t.) 4 mg/kg VPA (G6) and VPA-NV (G7) administration. Noncompartmental and compartmental analyses were performed using Excel® 2003 and Scientist® 2.0, respectively. Results: The particle size ranged 0.348 to 1.5 μm. This response was dependent on the proportion of chitosan, IPM, and Lipoid S45® used. The analysis of laser diffractometry showed only one particle size population for all formulations, mainly below 1 μm. The zeta potential was strongly positive (+41.3 to +50 mV) and it was influenced by chitosan, mainly. The formulations pH was acid. The viscosity was dependent on chitosan and IPM concentration. The F2 (chitosan 4 mg/mL; IPM 10 mg/mL and Lipoid S45® 8 mg/mL) was choosed to incorporate CZP. The CZP-NV (1 mg/mL) and blank-NV (unloaded) presented mean particle sizes of 181 ± 3 nm and 470 ± 2 nm, respectively, acid pH, positive zeta potentials, PDI below 0.3 and drug content close to 100%. CZP oral bioavailability after encapsulation into NV was 24%, twice the oral value observed for CZP in solution (9%). An increase in half-life was observed for CZP-NV (4.32 ± 1.33 h) in relation to free CZP (2.28 ± 0.68 h), due to the decrease in total clearance (a = 0.05). In the study with VPA, the mean diameter, zeta potential and pH of VPA-NV (5 mg/mL) and blank-NV were 333 ±1.5 nm and 131 ±1 nm; 25.6 ± 0.8 mV and +13.4 ± 1.7 mV; 2.69 ± 0.02 and 2.71 ± 0.08, respectively. The plasma profiles of G1, G2, and G3 declined in a bi-exponential fashion. G5 total clearance and volume of distribution at steady state were significantly decreased in relation to G4 (a = 0.05) and the half-life was not altered. The peak plasma concentration (Cmax) was significantly higher in the G7 group than G6, and the peak time (tmax) took place earlier after administration of G6. G7 clearance and volume of distribution at steady state were both significantly decreased in the same proportion in relation to G6 (a = 0.05), not altering the halflife. Conclusions: In this work a new nanovesicular system was developed and biologically evaluated. The system showed to be useful to improve VPA and CZP pharmacokinetics. The nanovesicles have potential for application for different biological and technological uses.application/pdfporQuitosanaNanopartículasFarmacocinéticaClozapinaÁcido valpróicoOil core self-organized chitosan nanovesiclesClozapineValproic acidPharmacokinetic evaluationDesenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosanaDevelopment, physico-chemical characterization and pharmacokinetic evaluation of self-assembly chitosan nanoparticules info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulFaculdade de FarmáciaPrograma de Pós-Graduação em Ciências FarmacêuticasPorto Alegre, BR-RS2012doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000860558.pdf000860558.pdfTexto parcialapplication/pdf297212http://www.lume.ufrgs.br/bitstream/10183/60368/1/000860558.pdf5ba84dd1d1a774884a19859beb476c2dMD51TEXT000860558.pdf.txt000860558.pdf.txtExtracted Texttext/plain73965http://www.lume.ufrgs.br/bitstream/10183/60368/2/000860558.pdf.txt5736031aaca63d798e535abd3a851b0eMD52THUMBNAIL000860558.pdf.jpg000860558.pdf.jpgGenerated Thumbnailimage/jpeg1043http://www.lume.ufrgs.br/bitstream/10183/60368/3/000860558.pdf.jpg7a539234e4167779c1d40053e11d4278MD5310183/603682022-01-07 05:32:52.462578oai:www.lume.ufrgs.br:10183/60368Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-01-07T07:32:52Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Desenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosana
dc.title.alternative.en.fl_str_mv Development, physico-chemical characterization and pharmacokinetic evaluation of self-assembly chitosan nanoparticules
title Desenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosana
spellingShingle Desenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosana
Haas, Sandra Elisa
Quitosana
Nanopartículas
Farmacocinética
Clozapina
Ácido valpróico
Oil core self-organized chitosan nanovesicles
Clozapine
Valproic acid
Pharmacokinetic evaluation
title_short Desenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosana
title_full Desenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosana
title_fullStr Desenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosana
title_full_unstemmed Desenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosana
title_sort Desenvolvimento, caracterização físico-química e avaliação farmacocinética de nanopartículas auto-organizadas de quitosana
author Haas, Sandra Elisa
author_facet Haas, Sandra Elisa
author_role author
dc.contributor.author.fl_str_mv Haas, Sandra Elisa
dc.contributor.advisor1.fl_str_mv Dalla Costa, Teresa Cristina Tavares
dc.contributor.advisor-co1.fl_str_mv Guterres, Silvia Stanisçuaski
contributor_str_mv Dalla Costa, Teresa Cristina Tavares
Guterres, Silvia Stanisçuaski
dc.subject.por.fl_str_mv Quitosana
Nanopartículas
Farmacocinética
Clozapina
Ácido valpróico
topic Quitosana
Nanopartículas
Farmacocinética
Clozapina
Ácido valpróico
Oil core self-organized chitosan nanovesicles
Clozapine
Valproic acid
Pharmacokinetic evaluation
dc.subject.eng.fl_str_mv Oil core self-organized chitosan nanovesicles
Clozapine
Valproic acid
Pharmacokinetic evaluation
description Objetivos: Sistemas nanoparticulados são úteis para modular a farmacocinética de substâncias. Nesse contexto, os objetivos deste trabalho foram o desenvolvimento de um sistema nanovesicular (NV) inovador auto-organizado de quitosana e lecitina, contendo miristato de isopropila (IPM) como núcleo oleoso capaz de alterar a farmacocinética da clozapina (CZP) e do ácido valpróico (VPA). Métodos: NV foram preparadas através da mistura, utilizando Ultraturrax, de uma solução etanólica contendo Lipoid S45® e IPM em uma solução aquosa de quitosana. As concentrações de quitosana (4 ou 8 mg/ml), IPM (10 e 20 mg/mL), Lipoid S45® (4 e 8 mg/ml) foram otimizadas através de um fatorial 23 que avaliou o diâmetro, potencial zeta, pH, viscosidade e análises de retroespalhamento de luz (BS) como respostas. Às nanovesículas do sistema otimizado pela análise fatorial foi incluído a CZP. A caracterização físico-química dessa formulação (NV-CZP) foi conduzida avaliandose os mesmos parâmetros citados acima. A farmacocinética dessa formulação foi avaliada em ratos Wistar pela via i.v (5 mg/kg, CZP livre) e oral (10 mg/kg, CZP livre e NV-CZP). Para a quantificação da CZP nas amostras de plasma obtidas em tempos pré-determinados após adminsitração das formulações um método analítico por CL-EM/EM foi desenvolvido e validado. O VPA também foi encapsulado nessas nanovesículas, nesse caso em substituição ao IPM, formando NV-VPA que foram caracterizadas físico-quimicamente. Os perfis cinéticos dessa formulação foram avaliados para os seguintes grupos de animais: VPA, ratos anestesiados (G1, 4 mg/kg) e não-anestesiados (G2, 4 mg/kg), VPA-NV (G3, 2 mg/kg), oral 4 mg/kg VPA (G4) e VPA-NV (G5), além da administração intra-traqueal (i.t.) de 4 mg/kg (VPA, G6 e VPA-NV, G7). Avaliação não-compartimental e compartimental dos perfis individuais de concentração plasmática da CZP e VPA foi realizada utilizando Excel® 2003 e Scientist® 2.0, respectivamente. Resultados: Os diâmetros das partículas no planejamento fatorial variaram de 0.348 a 1.5 μm. O diâmetro foi dependente da proporção de quitosana, IPM e lecitina utilizados nas formulações O potencial zeta positivo (+41.3 a +50 mV) foi influenciado principalmente pela concentração de quitosana. O pH de todas as formulações foi ácido. Os valores de viscosidade sofreram influência das concentrações de quitosana e IPM. A formulação otimizada (quitosana 4 mg/mL; IPM 10 mg/mL e Lipoid S45® 8 mg/mL) foi escolhida para encapsular a CZP. As nanovesículas de CZP (CZP-NV 1 mg/mL) e NV brancas apresentaram, respectivamente, tamanhos médios de 181 ± 3 nm e 470 ± 2 nm, pH ácido, potencial zeta positivo, índice de polidispersão abaixo de 0.3 e doseamento da CZP próximo a 100%. Após a encapsulação da CZP em NV, a biodisponibilidade oral foi 24%, duas vezes superior a biodisponibilidade da CZP livre (9%). Aumento na meia-vida foi observado para a CZP-NV (4.32 ± 1.33 h) em relação à CZP livre (2.28 ± 0.69 h), devido a uma diminuição da depuração plasmática. No estudo com VPA, o tamanho médio, potencial zeta e pH para VPA-NV (5 mg/mL) e NV brancas foram 333 ± 1.5 nm e 131 ±1 nm; 25.6 ± 0.8 mV e +13.4 ± 1.7 mV; 2.69 ± 0.02 e 2.71 ± 0.08, respectivamente. Os perfis plasmáticos dos grupos G1, G2, G3 declinaram de forma bi-exponencial. A depuração plasmática e o volume de distribuição no steady-state do G5 diminuíram significativamente e na mesma proporção em relação ao G4. A meia-vida não se alterou para o G4 e G5. O pico de concentração plasmática (Cmax) foi significativamente maior para G7 do que para G6 e o tempo para alcançar o pico (tmax) foi menor para o G6. A depuração plasmática e o volume de distribuição no steady-state do G7 diminuíram significativamente e na mesma proporção em relação ao grupo G6, não implicando em alteração na meia-vida do fármaco. Conclusões: Neste trabalho, um novo nanossistema vesicular foi desenvolvido e biologicamente avaliado. As nanovesículas mostraram-se úteis para melhor os parâmetros farmacocinéticos do VPA e da CZP, principalmente a biodisponibilidade oral, sendo promissoras para diferentes aplicações biológicas e tecnológicas.
publishDate 2012
dc.date.accessioned.fl_str_mv 2012-10-25T01:36:10Z
dc.date.issued.fl_str_mv 2012
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/60368
dc.identifier.nrb.pt_BR.fl_str_mv 000860558
url http://hdl.handle.net/10183/60368
identifier_str_mv 000860558
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/60368/1/000860558.pdf
http://www.lume.ufrgs.br/bitstream/10183/60368/2/000860558.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/60368/3/000860558.pdf.jpg
bitstream.checksum.fl_str_mv 5ba84dd1d1a774884a19859beb476c2d
5736031aaca63d798e535abd3a851b0e
7a539234e4167779c1d40053e11d4278
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1816736868813766656