Simulation of power plants steam generators and cooling towers with artificial neural network

Detalhes bibliográficos
Autor(a) principal: Reichert, Helena Haas
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/212374
Resumo: A modelagem da operação de equipamentos é uma opção metodológica importante para a melhoria da eficiência de usinas geradoras de energia. Uma dessas metodologias é a rede neural artificial (RNA), que vem ganhando espaço devido à sua capacidade de modelar problemas complexos com base em comportamentos registrados de sistemas reais. O objetivo do presente estudo é desenvolver modelos de RNA capazes de reproduzir o funcionamento do gerador de vapor e da torre úmida de arrefecimento da planta termoelétrica a carvão de PECÉM, no estado do Ceará, Brasil. O modelo de RNA para o gerador de vapor superaquecido a carvão estima a vazão mássica de vapor com base em registros de um ano de operação da Usina. A configuração das RNAs é obtida após uma série de testes com o objetivo de reduzir o erro de predição através do erro absoluto médio (EAM) em diferentes patamares de operação, obtendo-se um MAE de 1,28% para o conjunto total de dados de operação, 8,11% para a faixa de operação de 240 MW e 10,82% para a faixa de operação de 360 MW. O desempenho das redes é comparado ao de modelos de regressão linear múltipla aplicados ao mesmo conjunto de dados, para os quais se têm valores de MAE de 2,05%, 9,47% e 15,76%. Esses resultados mostram a capacidade da RNA de estimar a produção de vapor com erro abaixo daqueles de modelos de regressão. O modelo de RNA é desenvolvido para um dos conjuntos de torres úmidas de resfriamento ligado ao sistema de condensação de uma das plantas do sitio de geração. Essa planta é referenciada como de melhor desempenho e o modelo RNA gerado é aplicado aos dados de operação do segundo conjunto de torres, ajudando na identificação de possíveis desvios ou problemas de desempenho. Ferramentas estatísticas são usadas para avaliar os dois conjuntos de dados referentes as torres de cada usina e identificar correlações de parâmetros. Os modelos de RNA com melhor desempenho são obtidos com um coeficiente máximo de correlação R² de 0,9956 para a taxa de calor rejeitada e 0,8699 para a taxa de vazão mássica de água de reposição para o conjunto de dados de referência. O coeficiente R² encontrado para o segundo conjunto de torres é de 0,748 para a taxa de calor rejeitada e 0,905 para a vazão mássica de água de reposição. Esse resultado ajuda a identificar alguns comportamentos não padronizados da torre. Uma nova simulação sem os pontos de fora da curva (outlier) exibiu valores de R² de 0,98 e 0,99, respectivamente.
id URGS_3d69b989da0a6259f0a1c7e7e37e9a4b
oai_identifier_str oai:www.lume.ufrgs.br:10183/212374
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Reichert, Helena HaasSchneider, Paulo SmithFonseca Júnior, João Gari da Silva2020-07-24T03:39:27Z2019http://hdl.handle.net/10183/212374001115039A modelagem da operação de equipamentos é uma opção metodológica importante para a melhoria da eficiência de usinas geradoras de energia. Uma dessas metodologias é a rede neural artificial (RNA), que vem ganhando espaço devido à sua capacidade de modelar problemas complexos com base em comportamentos registrados de sistemas reais. O objetivo do presente estudo é desenvolver modelos de RNA capazes de reproduzir o funcionamento do gerador de vapor e da torre úmida de arrefecimento da planta termoelétrica a carvão de PECÉM, no estado do Ceará, Brasil. O modelo de RNA para o gerador de vapor superaquecido a carvão estima a vazão mássica de vapor com base em registros de um ano de operação da Usina. A configuração das RNAs é obtida após uma série de testes com o objetivo de reduzir o erro de predição através do erro absoluto médio (EAM) em diferentes patamares de operação, obtendo-se um MAE de 1,28% para o conjunto total de dados de operação, 8,11% para a faixa de operação de 240 MW e 10,82% para a faixa de operação de 360 MW. O desempenho das redes é comparado ao de modelos de regressão linear múltipla aplicados ao mesmo conjunto de dados, para os quais se têm valores de MAE de 2,05%, 9,47% e 15,76%. Esses resultados mostram a capacidade da RNA de estimar a produção de vapor com erro abaixo daqueles de modelos de regressão. O modelo de RNA é desenvolvido para um dos conjuntos de torres úmidas de resfriamento ligado ao sistema de condensação de uma das plantas do sitio de geração. Essa planta é referenciada como de melhor desempenho e o modelo RNA gerado é aplicado aos dados de operação do segundo conjunto de torres, ajudando na identificação de possíveis desvios ou problemas de desempenho. Ferramentas estatísticas são usadas para avaliar os dois conjuntos de dados referentes as torres de cada usina e identificar correlações de parâmetros. Os modelos de RNA com melhor desempenho são obtidos com um coeficiente máximo de correlação R² de 0,9956 para a taxa de calor rejeitada e 0,8699 para a taxa de vazão mássica de água de reposição para o conjunto de dados de referência. O coeficiente R² encontrado para o segundo conjunto de torres é de 0,748 para a taxa de calor rejeitada e 0,905 para a vazão mássica de água de reposição. Esse resultado ajuda a identificar alguns comportamentos não padronizados da torre. Uma nova simulação sem os pontos de fora da curva (outlier) exibiu valores de R² de 0,98 e 0,99, respectivamente.The modeling of equipment operation is an important methodological option for improving the efficiency of power plants. One of these methodologies is the artificial neural network (ANN), which is gaining space due to its ability to model complex problems based on acquired data from real systems. The objective of the present study is to develop ANN models capable of reproducing the operation of the steam generator and the wet cooling tower of the PECÉM coal-fired power plant in the state of Ceara, Brazil. The ANN model for the coal superheated steam generator estimates the steam mass flow rate based on year-long records of operation. ANN configuration is obtained after a series of tests with the objective of reducing the ANN mean absolute error (MAE) in different levels of operation, obtaining an MAE of 1,28% for the total set of data of operation, 8.11% for the 240 MW operating range and 10.82% for the 360 MW operating range. The network performance is compared to that of multiple linear regression models applied to the same data set, with MAE values of 2.05%, 9.47% and 15.76%. These results show the ability of ANN to estimate the production of vapor with errors below those of regression models. The ANN model is developed for one set of wet cooling towers connected to the condensation system. This plant is referred to present the best performance and the generated ANN model is applied to the operation data of the second plant, helping to identify possible deviations or performance problems. Statistical tools are used to evaluate the two cooling towers and to identify parameter correlations. The best performing ANN models are obtained with a R² correlation coefficient of 0.9956 for the rejected heat rate and 0.8699 for the makeup water mass flow rate for the reference data set. The coefficient R² found for the second set of towers is 0.748 for the rejected heat rate and 0.905 for the makeup water mass flow rate. The coefficient R² found for the second set of towers is 0.748 for the rejected heat rate and 0.905 for the makeup water mass flow rate. This result helps to identify some non-standard behavior of the tower. A new simulation without the outlier points exhibited R² values of 0.98 and 0.99, respectively.application/pdfengRedes neurais artificiaisTorre de resfriamentoUsinas termelétricas a carvãoArtificial neural networksSuper-heated steam generatorWet cooling towerCoal-fired power plant modelingSimulation of power plants steam generators and cooling towers with artificial neural networkinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPrograma de Pós-Graduação em Engenharia MecânicaPorto Alegre, BR-RS2019mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001115039.pdf.txt001115039.pdf.txtExtracted Texttext/plain121551http://www.lume.ufrgs.br/bitstream/10183/212374/2/001115039.pdf.txt346b27ec7dec9988406adcfd030884daMD52ORIGINAL001115039.pdfTexto completo (inglês)application/pdf11197131http://www.lume.ufrgs.br/bitstream/10183/212374/1/001115039.pdf787e1a07c78f64555c5d07c340de0527MD5110183/2123742020-07-25 03:58:14.715035oai:www.lume.ufrgs.br:10183/212374Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532020-07-25T06:58:14Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Simulation of power plants steam generators and cooling towers with artificial neural network
title Simulation of power plants steam generators and cooling towers with artificial neural network
spellingShingle Simulation of power plants steam generators and cooling towers with artificial neural network
Reichert, Helena Haas
Redes neurais artificiais
Torre de resfriamento
Usinas termelétricas a carvão
Artificial neural networks
Super-heated steam generator
Wet cooling tower
Coal-fired power plant modeling
title_short Simulation of power plants steam generators and cooling towers with artificial neural network
title_full Simulation of power plants steam generators and cooling towers with artificial neural network
title_fullStr Simulation of power plants steam generators and cooling towers with artificial neural network
title_full_unstemmed Simulation of power plants steam generators and cooling towers with artificial neural network
title_sort Simulation of power plants steam generators and cooling towers with artificial neural network
author Reichert, Helena Haas
author_facet Reichert, Helena Haas
author_role author
dc.contributor.author.fl_str_mv Reichert, Helena Haas
dc.contributor.advisor1.fl_str_mv Schneider, Paulo Smith
dc.contributor.advisor-co1.fl_str_mv Fonseca Júnior, João Gari da Silva
contributor_str_mv Schneider, Paulo Smith
Fonseca Júnior, João Gari da Silva
dc.subject.por.fl_str_mv Redes neurais artificiais
Torre de resfriamento
Usinas termelétricas a carvão
topic Redes neurais artificiais
Torre de resfriamento
Usinas termelétricas a carvão
Artificial neural networks
Super-heated steam generator
Wet cooling tower
Coal-fired power plant modeling
dc.subject.eng.fl_str_mv Artificial neural networks
Super-heated steam generator
Wet cooling tower
Coal-fired power plant modeling
description A modelagem da operação de equipamentos é uma opção metodológica importante para a melhoria da eficiência de usinas geradoras de energia. Uma dessas metodologias é a rede neural artificial (RNA), que vem ganhando espaço devido à sua capacidade de modelar problemas complexos com base em comportamentos registrados de sistemas reais. O objetivo do presente estudo é desenvolver modelos de RNA capazes de reproduzir o funcionamento do gerador de vapor e da torre úmida de arrefecimento da planta termoelétrica a carvão de PECÉM, no estado do Ceará, Brasil. O modelo de RNA para o gerador de vapor superaquecido a carvão estima a vazão mássica de vapor com base em registros de um ano de operação da Usina. A configuração das RNAs é obtida após uma série de testes com o objetivo de reduzir o erro de predição através do erro absoluto médio (EAM) em diferentes patamares de operação, obtendo-se um MAE de 1,28% para o conjunto total de dados de operação, 8,11% para a faixa de operação de 240 MW e 10,82% para a faixa de operação de 360 MW. O desempenho das redes é comparado ao de modelos de regressão linear múltipla aplicados ao mesmo conjunto de dados, para os quais se têm valores de MAE de 2,05%, 9,47% e 15,76%. Esses resultados mostram a capacidade da RNA de estimar a produção de vapor com erro abaixo daqueles de modelos de regressão. O modelo de RNA é desenvolvido para um dos conjuntos de torres úmidas de resfriamento ligado ao sistema de condensação de uma das plantas do sitio de geração. Essa planta é referenciada como de melhor desempenho e o modelo RNA gerado é aplicado aos dados de operação do segundo conjunto de torres, ajudando na identificação de possíveis desvios ou problemas de desempenho. Ferramentas estatísticas são usadas para avaliar os dois conjuntos de dados referentes as torres de cada usina e identificar correlações de parâmetros. Os modelos de RNA com melhor desempenho são obtidos com um coeficiente máximo de correlação R² de 0,9956 para a taxa de calor rejeitada e 0,8699 para a taxa de vazão mássica de água de reposição para o conjunto de dados de referência. O coeficiente R² encontrado para o segundo conjunto de torres é de 0,748 para a taxa de calor rejeitada e 0,905 para a vazão mássica de água de reposição. Esse resultado ajuda a identificar alguns comportamentos não padronizados da torre. Uma nova simulação sem os pontos de fora da curva (outlier) exibiu valores de R² de 0,98 e 0,99, respectivamente.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2020-07-24T03:39:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/212374
dc.identifier.nrb.pt_BR.fl_str_mv 001115039
url http://hdl.handle.net/10183/212374
identifier_str_mv 001115039
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/212374/2/001115039.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/212374/1/001115039.pdf
bitstream.checksum.fl_str_mv 346b27ec7dec9988406adcfd030884da
787e1a07c78f64555c5d07c340de0527
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085527623303168