Assinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicos

Detalhes bibliográficos
Autor(a) principal: Chapola, Henrique
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/232673
Resumo: COVID-19 é uma doença viral aguda causada pelo novo coronavírus SARS-CoV-2. Com milhões de casos de COVID-19 em todo o mundo, opções terapêuticas são urgentemente necessárias para mitigar a sua morbidade e mortalidade, mas atualmente permanecem limitadas. Uma estratégia promissora para obter informações relevantes sobre sua fisiopatologia que possam ter aplicações terapêuticas é investigar os mecanismos regulatórios envolvidos na progressão para COVID-19 severa. Este trabalho tem como objetivo reconstruir a rede regulatória de COVID-19 severa e encontrar seus Reguladores Mestres (chamados de assinatura da doença). Usamos séries de conjuntos de dados de expressão gênica, disponíveis publicamente, derivados de autópsias pulmonares de pacientes para inferir a rede regulatória associada a COVID-19 severa. Identificamos um conjunto de seis fatores de transcrição (TAL1, TEAD4, EPAS1, ATOH8, ERG e ARNTL2) como potenciais Reguladores Mestres da doença. Após, pela abordagem de Mapa de Conectividade para o reposicionamento de drogas, encontramos 52 drogas diferentes (anti-inflamatórios, anti-infecções, psicotrópicos, reguladores da pressão arterial e do ritmo cardíaco) que potencialmente revertem a assinatura COVID-19 severa, e podem representar novas alternativas terapêuticas para a doença. Além disso, usando o índice de Jaccard, avaliamos a sobreposição entre a assinatura clínica severa de COVID-19 inferida e os medicamentos com os resultados obtidos da análise de amostras de esfregaço (swab) nasofaríngeo de pacientes infectados e células Vero, A549 e NHBE infectadas com diferentes MOI (multiplicity of infection) de SARS-CoV-2, modelos pré-clínicos celulares amplamente usados para pesquisar novas opções terapêuticas potenciais. Nossos dados demonstram uma semelhança significativa de células NHBE com assinatura COVID-19 clínica severa, enquanto as células A549 e Vero foram mais semelhantes às amostras de swabs nasofaríngeos. Usando uma abordagem de transcritômica integrada, identificamos candidatos a reguladores mestres envolvidos com COVID-19 severa, bem como várias drogas que potencialmente revertem esse padrão de expressão e também fornecem novas perspectivas sobre alvos moleculares e reposicionamento de drogas para futura investigação e validação na doença. Ademais, nosso estudo demonstra a limitada sobreposição entre os dados clínicos e pré-clínicos na pesquisa COVID-19 e destaca ainda a necessidade crítica de escolher o melhor modelo pré-clínico disponível para orientar a pesquisa sobre a fisiopatologia e o reposicionamento de drogas em potencial.
id URGS_4709e8a094dcd0bd436cf34824dee2eb
oai_identifier_str oai:www.lume.ufrgs.br:10183/232673
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Chapola, HenriqueKlamt, FabioVargas, Daiani Machado de2021-12-08T04:29:29Z2021http://hdl.handle.net/10183/232673001134564COVID-19 é uma doença viral aguda causada pelo novo coronavírus SARS-CoV-2. Com milhões de casos de COVID-19 em todo o mundo, opções terapêuticas são urgentemente necessárias para mitigar a sua morbidade e mortalidade, mas atualmente permanecem limitadas. Uma estratégia promissora para obter informações relevantes sobre sua fisiopatologia que possam ter aplicações terapêuticas é investigar os mecanismos regulatórios envolvidos na progressão para COVID-19 severa. Este trabalho tem como objetivo reconstruir a rede regulatória de COVID-19 severa e encontrar seus Reguladores Mestres (chamados de assinatura da doença). Usamos séries de conjuntos de dados de expressão gênica, disponíveis publicamente, derivados de autópsias pulmonares de pacientes para inferir a rede regulatória associada a COVID-19 severa. Identificamos um conjunto de seis fatores de transcrição (TAL1, TEAD4, EPAS1, ATOH8, ERG e ARNTL2) como potenciais Reguladores Mestres da doença. Após, pela abordagem de Mapa de Conectividade para o reposicionamento de drogas, encontramos 52 drogas diferentes (anti-inflamatórios, anti-infecções, psicotrópicos, reguladores da pressão arterial e do ritmo cardíaco) que potencialmente revertem a assinatura COVID-19 severa, e podem representar novas alternativas terapêuticas para a doença. Além disso, usando o índice de Jaccard, avaliamos a sobreposição entre a assinatura clínica severa de COVID-19 inferida e os medicamentos com os resultados obtidos da análise de amostras de esfregaço (swab) nasofaríngeo de pacientes infectados e células Vero, A549 e NHBE infectadas com diferentes MOI (multiplicity of infection) de SARS-CoV-2, modelos pré-clínicos celulares amplamente usados para pesquisar novas opções terapêuticas potenciais. Nossos dados demonstram uma semelhança significativa de células NHBE com assinatura COVID-19 clínica severa, enquanto as células A549 e Vero foram mais semelhantes às amostras de swabs nasofaríngeos. Usando uma abordagem de transcritômica integrada, identificamos candidatos a reguladores mestres envolvidos com COVID-19 severa, bem como várias drogas que potencialmente revertem esse padrão de expressão e também fornecem novas perspectivas sobre alvos moleculares e reposicionamento de drogas para futura investigação e validação na doença. Ademais, nosso estudo demonstra a limitada sobreposição entre os dados clínicos e pré-clínicos na pesquisa COVID-19 e destaca ainda a necessidade crítica de escolher o melhor modelo pré-clínico disponível para orientar a pesquisa sobre a fisiopatologia e o reposicionamento de drogas em potencial.COVID-19 is an acute viral illness caused by the novel SARS-CoV-2 coronavirus. With millions of COVID-19 cases worldwide, therapeutic options are urgently needed to mitigate morbidity and mortality, but currently remain limited. A promising strategy to gain relevant information regarding its pathophysiology that could have therapeutic applications is to investigate the regulatory mechanisms involved in severe COVID-19 progression. This work aims to reconstruct the severe COVID-19 regulatory network and find its transcriptional master regulators (so called disease signature). We use a series of gene expression datasets, publicly available, from patient lung biopsies to infer the co-expression network associated with severe COVID-19. We identified a set of six transcription factors as potential master regulators (TAL1, TEAD4, EPAS1, ATOH8, ERG, and ARNTL2). After, by Connectivity Map drug repositioning approach, we found 52 different drugs (anti-inflammatories, anti-infections, psychotropics, blood pressure, and heart rhythm regulators) that potentially revert severe COVID-19 signature, and could be a new therapeutic venue for the disease. In addition, using Jaccard index, we evaluated the overlap between the inferred clinical severe COVID-19 signature and drugs with the ones obtained from infected patients nasopharyngeal swab samples of, and Vero, A549 and NHBE cells infected with different MOI (multiplicity of infection) of SARS-CoV-2, preclinical cell models widely used to research for new potential therapeutic options. Our data demonstrate a significant similarity of NHBE cells with clinical severe COVID-19 signature, whereas A549 and Vero cells were more similar to nasopharyngeal swabs samples. Using an integrated transcriptomics approach, we identified master regulators candidates involved with severe COVID-19, as well as several drugs that potentially reverse these expression patterns, and provides new perspectives on molecular targets and drug repositioning for future investigation and validation in severe COVID-19 management. Moreover, our study demonstrates how limited is the overlap between clinical and preclinical data in COVID-19 research and further highlights the critical need to choose the best preclinical model available to guide research into the pathophysiology and potential drugs repositioning.application/pdfporCOVID-19Pulmão : BiópsiaReposicionamento de medicamentosSARS-CoV-2 : GenéticaExpressão gênicaOntologia genéticaAssinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de Ciências Básicas da SaúdePrograma de Pós-Graduação em Ciências Biológicas: BioquímicaPorto Alegre, BR-RS2021mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001134564.pdf.txt001134564.pdf.txtExtracted Texttext/plain97392http://www.lume.ufrgs.br/bitstream/10183/232673/2/001134564.pdf.txtc9162ad7821eb5e8c86548b6b36e1b13MD52ORIGINAL001134564.pdfTexto completoapplication/pdf1908328http://www.lume.ufrgs.br/bitstream/10183/232673/1/001134564.pdf1c7bda8982399d9a830e8c0d8787f5beMD5110183/2326732024-08-16 05:49:54.546819oai:www.lume.ufrgs.br:10183/232673Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-08-16T08:49:54Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Assinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicos
title Assinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicos
spellingShingle Assinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicos
Chapola, Henrique
COVID-19
Pulmão : Biópsia
Reposicionamento de medicamentos
SARS-CoV-2 : Genética
Expressão gênica
Ontologia genética
title_short Assinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicos
title_full Assinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicos
title_fullStr Assinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicos
title_full_unstemmed Assinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicos
title_sort Assinatura da infecção severa com SARS-COV-2 em biópsias pulmonares e o seu uso para o reposicionamento de fármacos : estudo comparativo de dados de amostras clínicas e de modelos pré-clínicos
author Chapola, Henrique
author_facet Chapola, Henrique
author_role author
dc.contributor.author.fl_str_mv Chapola, Henrique
dc.contributor.advisor1.fl_str_mv Klamt, Fabio
dc.contributor.advisor-co1.fl_str_mv Vargas, Daiani Machado de
contributor_str_mv Klamt, Fabio
Vargas, Daiani Machado de
dc.subject.por.fl_str_mv COVID-19
Pulmão : Biópsia
Reposicionamento de medicamentos
SARS-CoV-2 : Genética
Expressão gênica
Ontologia genética
topic COVID-19
Pulmão : Biópsia
Reposicionamento de medicamentos
SARS-CoV-2 : Genética
Expressão gênica
Ontologia genética
description COVID-19 é uma doença viral aguda causada pelo novo coronavírus SARS-CoV-2. Com milhões de casos de COVID-19 em todo o mundo, opções terapêuticas são urgentemente necessárias para mitigar a sua morbidade e mortalidade, mas atualmente permanecem limitadas. Uma estratégia promissora para obter informações relevantes sobre sua fisiopatologia que possam ter aplicações terapêuticas é investigar os mecanismos regulatórios envolvidos na progressão para COVID-19 severa. Este trabalho tem como objetivo reconstruir a rede regulatória de COVID-19 severa e encontrar seus Reguladores Mestres (chamados de assinatura da doença). Usamos séries de conjuntos de dados de expressão gênica, disponíveis publicamente, derivados de autópsias pulmonares de pacientes para inferir a rede regulatória associada a COVID-19 severa. Identificamos um conjunto de seis fatores de transcrição (TAL1, TEAD4, EPAS1, ATOH8, ERG e ARNTL2) como potenciais Reguladores Mestres da doença. Após, pela abordagem de Mapa de Conectividade para o reposicionamento de drogas, encontramos 52 drogas diferentes (anti-inflamatórios, anti-infecções, psicotrópicos, reguladores da pressão arterial e do ritmo cardíaco) que potencialmente revertem a assinatura COVID-19 severa, e podem representar novas alternativas terapêuticas para a doença. Além disso, usando o índice de Jaccard, avaliamos a sobreposição entre a assinatura clínica severa de COVID-19 inferida e os medicamentos com os resultados obtidos da análise de amostras de esfregaço (swab) nasofaríngeo de pacientes infectados e células Vero, A549 e NHBE infectadas com diferentes MOI (multiplicity of infection) de SARS-CoV-2, modelos pré-clínicos celulares amplamente usados para pesquisar novas opções terapêuticas potenciais. Nossos dados demonstram uma semelhança significativa de células NHBE com assinatura COVID-19 clínica severa, enquanto as células A549 e Vero foram mais semelhantes às amostras de swabs nasofaríngeos. Usando uma abordagem de transcritômica integrada, identificamos candidatos a reguladores mestres envolvidos com COVID-19 severa, bem como várias drogas que potencialmente revertem esse padrão de expressão e também fornecem novas perspectivas sobre alvos moleculares e reposicionamento de drogas para futura investigação e validação na doença. Ademais, nosso estudo demonstra a limitada sobreposição entre os dados clínicos e pré-clínicos na pesquisa COVID-19 e destaca ainda a necessidade crítica de escolher o melhor modelo pré-clínico disponível para orientar a pesquisa sobre a fisiopatologia e o reposicionamento de drogas em potencial.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-12-08T04:29:29Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/232673
dc.identifier.nrb.pt_BR.fl_str_mv 001134564
url http://hdl.handle.net/10183/232673
identifier_str_mv 001134564
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/232673/2/001134564.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/232673/1/001134564.pdf
bitstream.checksum.fl_str_mv c9162ad7821eb5e8c86548b6b36e1b13
1c7bda8982399d9a830e8c0d8787f5be
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085569434222592