Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguai

Detalhes bibliográficos
Autor(a) principal: Moreira, Giuliana Chaves
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/147081
Resumo: Este trabalho avaliou o potencial da aplicação da técnica recursiva dos mínimos quadrados (MQR) para o ajuste em tempo atual dos parâmetros de modelos autorregressivos com variáveis exógenas (ARX), as quais são constituídas pelos níveis de montante para melhorar o desempenho das previsões de níveis fluviais em tempo atual. Três aspectos foram estudados em conjunto: variação do alcance escolhido para a previsão, variação da proporção da área controlada em bacias a montante e variação da área da bacia da seção de previsão. A pesquisa foi realizada em três dimensões principais: a) metodológica (sem recursividade; com recursividade; com recursividade e fator de esquecimento); b) temporal (6 alcances diferentes: 10, 24, 34, 48, 58 e 72 horas); e c) espacial (variação da área controlada da bacia e da área da bacia definida pela seção de previsão). A área de estudo escolhida para essa pesquisa foi a bacia do rio Uruguai com exutório no posto fluviométrico de Uruguaiana (190.000 km²) e as suas sub-bacias embutidas de Itaqui (131.000 km²), Passo São Borja (125.000km²), Garruchos (116.000 km²), Porto Lucena (95.200 km²), Alto Uruguai (82.300 km²) e Iraí (61.900 km²). Os dados de níveis fluviométricos, com leituras diárias às 07:00 e às 17:00 horas, foram fornecidos pela Companhia de Pesquisa de Recursos Minerais (CPRM), sendo utilizados os dados de 1/1/1991 a 30/6/2015. Para a análise de desempenho dos modelos, foi aplicado como estatística de qualidade o coeficiente de Nash-Sutcliffe (NS) e o quantil 0,95 dos erros absolutos (EA(0,95): erro que não foi ultrapassado com a frequência de 0,95). Observou-se que os erros EA(0,95) dos melhores modelos obtidos para cada bacia sempre aumentam com a redução da área controlada, ou seja, a qualidade das previsões diminui com o deslocamento da seção de controle de jusante para montante. O ganho na qualidade das previsões com a utilização dos recursos adaptativos torna-se mais evidente, especialmente quando observam-se os valores de EA(0,95), pois esta estatística é mais sensível, com diferenças maiores em relação ao coeficiente NS. Além disso, este é mais representativo para os erros maiores, que ocorrem justamente durante os eventos de inundações. De modo geral, foi observado que, à medida que diminui a área da bacia, é possível obter previsões com alcances cada vez menores. Porém a influência do tamanho da área controlada de bacias a montante melhora o desempenho de bacias menores quando se observam principalmente os erros EA(0,95). Por outro lado, se a proporção da bacia controlada de montante já é bastante grande, como é o caso das alternativas 1 e 2 utilizadas para previsão em Itaqui (entre 88,5% e 95,4 %, respectivamente), os recursos adaptativos não fazem muita diferença na obtenção de melhores resultados. Todavia, quando se observam bacias com menores áreas de montante controladas, como é o caso de Porto Lucena para a alternativa 2 (65% de área controlada), o ganho no desempenho dos modelos com a utilização dos recursos adaptativos completos (MQR+f.e: mínimos quadrados recursivos com fator de esquecimento) torna-se relevante.
id URGS_5298fd6e3716c7a6e7c7f9b9020819bd
oai_identifier_str oai:www.lume.ufrgs.br:10183/147081
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Moreira, Giuliana ChavesPedrollo, Olavo Correa2016-08-11T02:15:55Z2016http://hdl.handle.net/10183/147081000998810Este trabalho avaliou o potencial da aplicação da técnica recursiva dos mínimos quadrados (MQR) para o ajuste em tempo atual dos parâmetros de modelos autorregressivos com variáveis exógenas (ARX), as quais são constituídas pelos níveis de montante para melhorar o desempenho das previsões de níveis fluviais em tempo atual. Três aspectos foram estudados em conjunto: variação do alcance escolhido para a previsão, variação da proporção da área controlada em bacias a montante e variação da área da bacia da seção de previsão. A pesquisa foi realizada em três dimensões principais: a) metodológica (sem recursividade; com recursividade; com recursividade e fator de esquecimento); b) temporal (6 alcances diferentes: 10, 24, 34, 48, 58 e 72 horas); e c) espacial (variação da área controlada da bacia e da área da bacia definida pela seção de previsão). A área de estudo escolhida para essa pesquisa foi a bacia do rio Uruguai com exutório no posto fluviométrico de Uruguaiana (190.000 km²) e as suas sub-bacias embutidas de Itaqui (131.000 km²), Passo São Borja (125.000km²), Garruchos (116.000 km²), Porto Lucena (95.200 km²), Alto Uruguai (82.300 km²) e Iraí (61.900 km²). Os dados de níveis fluviométricos, com leituras diárias às 07:00 e às 17:00 horas, foram fornecidos pela Companhia de Pesquisa de Recursos Minerais (CPRM), sendo utilizados os dados de 1/1/1991 a 30/6/2015. Para a análise de desempenho dos modelos, foi aplicado como estatística de qualidade o coeficiente de Nash-Sutcliffe (NS) e o quantil 0,95 dos erros absolutos (EA(0,95): erro que não foi ultrapassado com a frequência de 0,95). Observou-se que os erros EA(0,95) dos melhores modelos obtidos para cada bacia sempre aumentam com a redução da área controlada, ou seja, a qualidade das previsões diminui com o deslocamento da seção de controle de jusante para montante. O ganho na qualidade das previsões com a utilização dos recursos adaptativos torna-se mais evidente, especialmente quando observam-se os valores de EA(0,95), pois esta estatística é mais sensível, com diferenças maiores em relação ao coeficiente NS. Além disso, este é mais representativo para os erros maiores, que ocorrem justamente durante os eventos de inundações. De modo geral, foi observado que, à medida que diminui a área da bacia, é possível obter previsões com alcances cada vez menores. Porém a influência do tamanho da área controlada de bacias a montante melhora o desempenho de bacias menores quando se observam principalmente os erros EA(0,95). Por outro lado, se a proporção da bacia controlada de montante já é bastante grande, como é o caso das alternativas 1 e 2 utilizadas para previsão em Itaqui (entre 88,5% e 95,4 %, respectivamente), os recursos adaptativos não fazem muita diferença na obtenção de melhores resultados. Todavia, quando se observam bacias com menores áreas de montante controladas, como é o caso de Porto Lucena para a alternativa 2 (65% de área controlada), o ganho no desempenho dos modelos com a utilização dos recursos adaptativos completos (MQR+f.e: mínimos quadrados recursivos com fator de esquecimento) torna-se relevante.This study evaluated the potential of the application of the recursive least squares technique (RLS) to adjust in real time the model parameters of the autoregressive models with exogenous variables (ARX), which consists of the upstream levels, to improve the performance of the forecasts of river levels in real time. Three aspects were studied jointly: the variation of the lead time chosen for the forecast, the variation in the proportion of controlled area in upstream basins and variation in the area of forecasting section of the basin. The research was conducted in three main dimensions: a) methodological (without recursion; with recursion; with recursion and forgetting factor); b) temporal (6 different lead times: 10, 24, 34, 48, 58 and 72 hours); and c) spatial (variation in the controlled area of the basin and the area of the basin defined by the forecast section). The study area chosen for this research was the Uruguay River basin with its outflow at the river gage station of Uruguaiana (190,000 km²) and its entrenched sub-basins in Itaqui (131,000 km²), Passo São Borja (125,000 km²), Garruchos (116,000 km²), Porto Lucena (95,200 km²), Alto Uruguai (82,300 km²), and Iraí (61,900 km²). The river levels data, with daily readings at 7am and 5pm, were provided by the Company of Mineral Resources Research (CPRM), with the data used from January 1, 1991 to June 30, 2015. We applied the Nash-Sutcliffe coefficient (NS) and the quantile 0.95 of absolute errors (EA(0,95): error has not been exceeded at the rate of 0.95) for the analysis of models performances. We observed that the errors EA(0.95) of the best models obtained for each basin always increase with the reduction of the controlled area then the quality of the forecasts decreases with displacement of the downstream control section upstream. The gain in quality of the forecasts with the use of adaptive resources becomes more evident especially when the observed values of EA(0.95) as this statistic is more sensitive with greater differences in relation to the Nash-Sutcliffe Coefficient (NS). Moreover, this is most representative for larger errors which occur precisely during flooding events. In general, we observed that, as much as the area of the basin decreases, it is possible to obtain forecasts with smaller lead times, but the influence of the size of the area controlled upstream basins improves the performance of smaller basins when observing, especially the errors EA (0.95). However, if the proportion of the upstream of controlled basin is already quite large - as in the case of the alternatives 1 and 2 used for forecast in Itaqui (between 88.5% and 95.4%, respectively) - the adaptive resources do not differ too much in getting better results. However, when observing basins with smaller areas controlled upstream - as is the case of Porto Lucena to alternative 2 (65% controlled area) - the performance gain of the models with the use of the complete adaptive resources (MQR+f.e.) becomes relevant.application/pdfporBacias hidrográficasModelo arxInundaçãoNested drainage basinsARX modelRecursive least squaresReal-time forecastingPrevisão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguaiinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de Pesquisas HidráulicasPrograma de Pós-Graduação em Recursos Hídricos e Saneamento AmbientalPorto Alegre, BR-RS2016mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000998810.pdf000998810.pdfTexto completoapplication/pdf3804694http://www.lume.ufrgs.br/bitstream/10183/147081/1/000998810.pdf7c9ee692cea2eb5ef427ff779db7c23bMD51TEXT000998810.pdf.txt000998810.pdf.txtExtracted Texttext/plain292363http://www.lume.ufrgs.br/bitstream/10183/147081/2/000998810.pdf.txt74e612a457ad55230b89a7743e388ed8MD52THUMBNAIL000998810.pdf.jpg000998810.pdf.jpgGenerated Thumbnailimage/jpeg1168http://www.lume.ufrgs.br/bitstream/10183/147081/3/000998810.pdf.jpg320a0cc0d020493e3b60a44592e845e3MD5310183/1470812024-03-28 06:23:15.39825oai:www.lume.ufrgs.br:10183/147081Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-03-28T09:23:15Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguai
title Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguai
spellingShingle Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguai
Moreira, Giuliana Chaves
Bacias hidrográficas
Modelo arx
Inundação
Nested drainage basins
ARX model
Recursive least squares
Real-time forecasting
title_short Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguai
title_full Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguai
title_fullStr Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguai
title_full_unstemmed Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguai
title_sort Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio Uruguai
author Moreira, Giuliana Chaves
author_facet Moreira, Giuliana Chaves
author_role author
dc.contributor.author.fl_str_mv Moreira, Giuliana Chaves
dc.contributor.advisor1.fl_str_mv Pedrollo, Olavo Correa
contributor_str_mv Pedrollo, Olavo Correa
dc.subject.por.fl_str_mv Bacias hidrográficas
Modelo arx
Inundação
topic Bacias hidrográficas
Modelo arx
Inundação
Nested drainage basins
ARX model
Recursive least squares
Real-time forecasting
dc.subject.eng.fl_str_mv Nested drainage basins
ARX model
Recursive least squares
Real-time forecasting
description Este trabalho avaliou o potencial da aplicação da técnica recursiva dos mínimos quadrados (MQR) para o ajuste em tempo atual dos parâmetros de modelos autorregressivos com variáveis exógenas (ARX), as quais são constituídas pelos níveis de montante para melhorar o desempenho das previsões de níveis fluviais em tempo atual. Três aspectos foram estudados em conjunto: variação do alcance escolhido para a previsão, variação da proporção da área controlada em bacias a montante e variação da área da bacia da seção de previsão. A pesquisa foi realizada em três dimensões principais: a) metodológica (sem recursividade; com recursividade; com recursividade e fator de esquecimento); b) temporal (6 alcances diferentes: 10, 24, 34, 48, 58 e 72 horas); e c) espacial (variação da área controlada da bacia e da área da bacia definida pela seção de previsão). A área de estudo escolhida para essa pesquisa foi a bacia do rio Uruguai com exutório no posto fluviométrico de Uruguaiana (190.000 km²) e as suas sub-bacias embutidas de Itaqui (131.000 km²), Passo São Borja (125.000km²), Garruchos (116.000 km²), Porto Lucena (95.200 km²), Alto Uruguai (82.300 km²) e Iraí (61.900 km²). Os dados de níveis fluviométricos, com leituras diárias às 07:00 e às 17:00 horas, foram fornecidos pela Companhia de Pesquisa de Recursos Minerais (CPRM), sendo utilizados os dados de 1/1/1991 a 30/6/2015. Para a análise de desempenho dos modelos, foi aplicado como estatística de qualidade o coeficiente de Nash-Sutcliffe (NS) e o quantil 0,95 dos erros absolutos (EA(0,95): erro que não foi ultrapassado com a frequência de 0,95). Observou-se que os erros EA(0,95) dos melhores modelos obtidos para cada bacia sempre aumentam com a redução da área controlada, ou seja, a qualidade das previsões diminui com o deslocamento da seção de controle de jusante para montante. O ganho na qualidade das previsões com a utilização dos recursos adaptativos torna-se mais evidente, especialmente quando observam-se os valores de EA(0,95), pois esta estatística é mais sensível, com diferenças maiores em relação ao coeficiente NS. Além disso, este é mais representativo para os erros maiores, que ocorrem justamente durante os eventos de inundações. De modo geral, foi observado que, à medida que diminui a área da bacia, é possível obter previsões com alcances cada vez menores. Porém a influência do tamanho da área controlada de bacias a montante melhora o desempenho de bacias menores quando se observam principalmente os erros EA(0,95). Por outro lado, se a proporção da bacia controlada de montante já é bastante grande, como é o caso das alternativas 1 e 2 utilizadas para previsão em Itaqui (entre 88,5% e 95,4 %, respectivamente), os recursos adaptativos não fazem muita diferença na obtenção de melhores resultados. Todavia, quando se observam bacias com menores áreas de montante controladas, como é o caso de Porto Lucena para a alternativa 2 (65% de área controlada), o ganho no desempenho dos modelos com a utilização dos recursos adaptativos completos (MQR+f.e: mínimos quadrados recursivos com fator de esquecimento) torna-se relevante.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-08-11T02:15:55Z
dc.date.issued.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/147081
dc.identifier.nrb.pt_BR.fl_str_mv 000998810
url http://hdl.handle.net/10183/147081
identifier_str_mv 000998810
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/147081/1/000998810.pdf
http://www.lume.ufrgs.br/bitstream/10183/147081/2/000998810.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/147081/3/000998810.pdf.jpg
bitstream.checksum.fl_str_mv 7c9ee692cea2eb5ef427ff779db7c23b
74e612a457ad55230b89a7743e388ed8
320a0cc0d020493e3b60a44592e845e3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085375823052800