Análise da complexidade computacional de problemas de estatística descritiva com entradas intervalares

Detalhes bibliográficos
Autor(a) principal: Loreto, Aline Brum
Data de Publicação: 2006
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/5730
Resumo: A Estatística é uma ferramenta indispensável em todos os campos científicos. A Estatística descritiva é usada para sintetizar dados. O principal problema desta área está relacionado aos valores de uma amostra, os quais geralmente possuem erros que ocorrem durante a obtenção dos dados. Um dos objetivos deste trabalho é apresentar uma forma de representação para os valores amostrais que considera os erros contidos nestes valores. Esta representação é realizada através de intervalos. A literatura mostra que foram realizadas pesquisas somente em problemas de calcular os valores intervalares das medidas de dispersão variância, covariância e coeficiente de correlação, que a utilização da computação intervalar na solução de problemas de medidas de dispersão intervalar sempre fornece solução com intervalos superestimados (intervalos com amplitude grande), e que ao procurar uma solução com intervalos de amplitude pequena (através da computação da imagem intervalar), o problema passa a pertencer a classe de problemas NP-Difícil. Com o objetivo principal de analisar a complexidade computacional dos problemas de computar os valores dos indicadores estatísticos descritivos com entradas intervalares, e realizar uma classificação quanto a classe de complexidade, a presente tese apresenta: i) definições intervalares de medidas de tendência central, medidas de dispersão e separatrizes; ii) investigação da complexidade de problemas das medidas de tendência central média, mediana e moda, das medidas de dispersão amplitude, variância, desvio padrão, coeficiente de variação, covariância, coeficiente de correlação e das separatrizes e iii) representação intervalar dos valores reais, de tal modo que garante a qualidade de aproximação nos intervalos solução calculado através da extensão intervalar Primeiramente, apresentamos uma abordagem intervalar para os indicadores estatísticos e propomos algoritmos para a solução dos problemas de computar os intervalos de medidas de tendência central intervalar, dispersão intervalar e separatrizes intervalares. Tais algoritmos utilizam a aritmética intervalar definida por Moore, a extensão intervalar e foram projetados para serem executados em ambientes intervalares como IntLab e Maple Intervalar. Por meio da análise da complexidade computacional verificamos que os problemas de medidas de tendência central, dispersão e separatrizes, com entradas intervalares, pertencem à classe de problemas P. Este trabalho apresenta, portanto, algoritmos de tempo polinomial que calculam os intervalos dos indicadores estatísticos com entradas intervalares, e que retornam como solução intervalos com qualidade de aproximação. Os resultados obtidos no desenvolvimento do trabalho tornaram viável a computação da Estatística Descritiva Intervalar.
id URGS_5cdf18af6b437339688e8128c7ef9063
oai_identifier_str oai:www.lume.ufrgs.br:10183/5730
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Loreto, Aline BrumRibeiro, LeilaToscani, Laira Vieira2007-06-06T18:49:32Z2006http://hdl.handle.net/10183/5730000518838A Estatística é uma ferramenta indispensável em todos os campos científicos. A Estatística descritiva é usada para sintetizar dados. O principal problema desta área está relacionado aos valores de uma amostra, os quais geralmente possuem erros que ocorrem durante a obtenção dos dados. Um dos objetivos deste trabalho é apresentar uma forma de representação para os valores amostrais que considera os erros contidos nestes valores. Esta representação é realizada através de intervalos. A literatura mostra que foram realizadas pesquisas somente em problemas de calcular os valores intervalares das medidas de dispersão variância, covariância e coeficiente de correlação, que a utilização da computação intervalar na solução de problemas de medidas de dispersão intervalar sempre fornece solução com intervalos superestimados (intervalos com amplitude grande), e que ao procurar uma solução com intervalos de amplitude pequena (através da computação da imagem intervalar), o problema passa a pertencer a classe de problemas NP-Difícil. Com o objetivo principal de analisar a complexidade computacional dos problemas de computar os valores dos indicadores estatísticos descritivos com entradas intervalares, e realizar uma classificação quanto a classe de complexidade, a presente tese apresenta: i) definições intervalares de medidas de tendência central, medidas de dispersão e separatrizes; ii) investigação da complexidade de problemas das medidas de tendência central média, mediana e moda, das medidas de dispersão amplitude, variância, desvio padrão, coeficiente de variação, covariância, coeficiente de correlação e das separatrizes e iii) representação intervalar dos valores reais, de tal modo que garante a qualidade de aproximação nos intervalos solução calculado através da extensão intervalar Primeiramente, apresentamos uma abordagem intervalar para os indicadores estatísticos e propomos algoritmos para a solução dos problemas de computar os intervalos de medidas de tendência central intervalar, dispersão intervalar e separatrizes intervalares. Tais algoritmos utilizam a aritmética intervalar definida por Moore, a extensão intervalar e foram projetados para serem executados em ambientes intervalares como IntLab e Maple Intervalar. Por meio da análise da complexidade computacional verificamos que os problemas de medidas de tendência central, dispersão e separatrizes, com entradas intervalares, pertencem à classe de problemas P. Este trabalho apresenta, portanto, algoritmos de tempo polinomial que calculam os intervalos dos indicadores estatísticos com entradas intervalares, e que retornam como solução intervalos com qualidade de aproximação. Os resultados obtidos no desenvolvimento do trabalho tornaram viável a computação da Estatística Descritiva Intervalar.application/pdfporAnalise : IntervalosPolinômiosComplexidade computacionalAnálise da complexidade computacional de problemas de estatística descritiva com entradas intervalaresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2006doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000518838.pdf000518838.pdfTexto completoapplication/pdf443791http://www.lume.ufrgs.br/bitstream/10183/5730/1/000518838.pdfad72552e2ec5d5247e7038652faa85ddMD51TEXT000518838.pdf.txt000518838.pdf.txtExtracted Texttext/plain202300http://www.lume.ufrgs.br/bitstream/10183/5730/2/000518838.pdf.txt3eb9dbf0cf171f0d3a27901ac08ad1c9MD52THUMBNAIL000518838.pdf.jpg000518838.pdf.jpgGenerated Thumbnailimage/jpeg1150http://www.lume.ufrgs.br/bitstream/10183/5730/3/000518838.pdf.jpg0413b1ea72592dd1f88d237bb87d2693MD5310183/57302018-10-15 09:16:55.689oai:www.lume.ufrgs.br:10183/5730Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-15T12:16:55Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Análise da complexidade computacional de problemas de estatística descritiva com entradas intervalares
title Análise da complexidade computacional de problemas de estatística descritiva com entradas intervalares
spellingShingle Análise da complexidade computacional de problemas de estatística descritiva com entradas intervalares
Loreto, Aline Brum
Analise : Intervalos
Polinômios
Complexidade computacional
title_short Análise da complexidade computacional de problemas de estatística descritiva com entradas intervalares
title_full Análise da complexidade computacional de problemas de estatística descritiva com entradas intervalares
title_fullStr Análise da complexidade computacional de problemas de estatística descritiva com entradas intervalares
title_full_unstemmed Análise da complexidade computacional de problemas de estatística descritiva com entradas intervalares
title_sort Análise da complexidade computacional de problemas de estatística descritiva com entradas intervalares
author Loreto, Aline Brum
author_facet Loreto, Aline Brum
author_role author
dc.contributor.author.fl_str_mv Loreto, Aline Brum
dc.contributor.advisor1.fl_str_mv Ribeiro, Leila
dc.contributor.advisor-co1.fl_str_mv Toscani, Laira Vieira
contributor_str_mv Ribeiro, Leila
Toscani, Laira Vieira
dc.subject.por.fl_str_mv Analise : Intervalos
Polinômios
Complexidade computacional
topic Analise : Intervalos
Polinômios
Complexidade computacional
description A Estatística é uma ferramenta indispensável em todos os campos científicos. A Estatística descritiva é usada para sintetizar dados. O principal problema desta área está relacionado aos valores de uma amostra, os quais geralmente possuem erros que ocorrem durante a obtenção dos dados. Um dos objetivos deste trabalho é apresentar uma forma de representação para os valores amostrais que considera os erros contidos nestes valores. Esta representação é realizada através de intervalos. A literatura mostra que foram realizadas pesquisas somente em problemas de calcular os valores intervalares das medidas de dispersão variância, covariância e coeficiente de correlação, que a utilização da computação intervalar na solução de problemas de medidas de dispersão intervalar sempre fornece solução com intervalos superestimados (intervalos com amplitude grande), e que ao procurar uma solução com intervalos de amplitude pequena (através da computação da imagem intervalar), o problema passa a pertencer a classe de problemas NP-Difícil. Com o objetivo principal de analisar a complexidade computacional dos problemas de computar os valores dos indicadores estatísticos descritivos com entradas intervalares, e realizar uma classificação quanto a classe de complexidade, a presente tese apresenta: i) definições intervalares de medidas de tendência central, medidas de dispersão e separatrizes; ii) investigação da complexidade de problemas das medidas de tendência central média, mediana e moda, das medidas de dispersão amplitude, variância, desvio padrão, coeficiente de variação, covariância, coeficiente de correlação e das separatrizes e iii) representação intervalar dos valores reais, de tal modo que garante a qualidade de aproximação nos intervalos solução calculado através da extensão intervalar Primeiramente, apresentamos uma abordagem intervalar para os indicadores estatísticos e propomos algoritmos para a solução dos problemas de computar os intervalos de medidas de tendência central intervalar, dispersão intervalar e separatrizes intervalares. Tais algoritmos utilizam a aritmética intervalar definida por Moore, a extensão intervalar e foram projetados para serem executados em ambientes intervalares como IntLab e Maple Intervalar. Por meio da análise da complexidade computacional verificamos que os problemas de medidas de tendência central, dispersão e separatrizes, com entradas intervalares, pertencem à classe de problemas P. Este trabalho apresenta, portanto, algoritmos de tempo polinomial que calculam os intervalos dos indicadores estatísticos com entradas intervalares, e que retornam como solução intervalos com qualidade de aproximação. Os resultados obtidos no desenvolvimento do trabalho tornaram viável a computação da Estatística Descritiva Intervalar.
publishDate 2006
dc.date.issued.fl_str_mv 2006
dc.date.accessioned.fl_str_mv 2007-06-06T18:49:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/5730
dc.identifier.nrb.pt_BR.fl_str_mv 000518838
url http://hdl.handle.net/10183/5730
identifier_str_mv 000518838
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/5730/1/000518838.pdf
http://www.lume.ufrgs.br/bitstream/10183/5730/2/000518838.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/5730/3/000518838.pdf.jpg
bitstream.checksum.fl_str_mv ad72552e2ec5d5247e7038652faa85dd
3eb9dbf0cf171f0d3a27901ac08ad1c9
0413b1ea72592dd1f88d237bb87d2693
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085057419804672