Estudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladas

Detalhes bibliográficos
Autor(a) principal: Grondona, Atilio Efrain Bica
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/115269
Resumo: Esta dissertação aborda o problema da utilização de classificadores paramétricos em dados de alta dimensionalidade. As vantagens trazidas pelos dados em alta dimensionalidade são bem conhecidas. Classes que são muito semelhantes podem, não obstante, ser separadas com um alto grau de acurácia desde que a classificação dos dados seja realizada em um espaço de alta dimensionalidade e que as matrizes de covariância das classes difiram significativamente. Sistemas sensores capazes de adquirir dados de imagem em alta dimensionalidade (dados de imagens hiperespectrais) foram, em parte, desenvolvidos para tirar proveito dessa condição. Nas condições do mundo real, no entanto, temos de enfrentar o problema de estimar um grande número de parâmetros, geralmente, com um número limitado de amostras. Amostras de treinamento são geralmente caras e demoradas para adquirir. Diferentes abordagens para resolver ou, pelo menos, atenuar este problema tem sido um tópico de investigação por parte da comunidade internacional em sensoriamento remoto. Entre outras, uma possível abordagem que tem sido proposta na literatura consiste em aumentar o número de amostras pela adição de amostras semi-rotuladas ao processo de estimação dos parâmetros do classificador. A metodologia investigada nesta dissertação segue esta abordagem geral. O foco principal deste estudo consiste em investigar uma abordagem para estimar os pesos a serem associados às amostras semi-rotuladas. A abordagem proposta inclui duas etapas. Na primeira, as estimativas iniciais para os pesos são realizadas de forma interativa, por meio da utilização de informações espectrais somente. Em uma segunda etapa, os pesos estimados são refinados por meio de informações de contexto espacial. A metodologia proposta é avaliada através de experimentos que fazem uso de dados de imagens hiperespectrais AVIRIS. Os resultados são apresentados e discutidos. Sugestões para futuras pesquisas neste tópico também são apresentados.
id URGS_5d736085f3d52283003e1707b8de6052
oai_identifier_str oai:www.lume.ufrgs.br:10183/115269
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Grondona, Atilio Efrain BicaHaertel, Vitor Francisco de Araújo2015-04-14T01:57:42Z2011http://hdl.handle.net/10183/115269000956755Esta dissertação aborda o problema da utilização de classificadores paramétricos em dados de alta dimensionalidade. As vantagens trazidas pelos dados em alta dimensionalidade são bem conhecidas. Classes que são muito semelhantes podem, não obstante, ser separadas com um alto grau de acurácia desde que a classificação dos dados seja realizada em um espaço de alta dimensionalidade e que as matrizes de covariância das classes difiram significativamente. Sistemas sensores capazes de adquirir dados de imagem em alta dimensionalidade (dados de imagens hiperespectrais) foram, em parte, desenvolvidos para tirar proveito dessa condição. Nas condições do mundo real, no entanto, temos de enfrentar o problema de estimar um grande número de parâmetros, geralmente, com um número limitado de amostras. Amostras de treinamento são geralmente caras e demoradas para adquirir. Diferentes abordagens para resolver ou, pelo menos, atenuar este problema tem sido um tópico de investigação por parte da comunidade internacional em sensoriamento remoto. Entre outras, uma possível abordagem que tem sido proposta na literatura consiste em aumentar o número de amostras pela adição de amostras semi-rotuladas ao processo de estimação dos parâmetros do classificador. A metodologia investigada nesta dissertação segue esta abordagem geral. O foco principal deste estudo consiste em investigar uma abordagem para estimar os pesos a serem associados às amostras semi-rotuladas. A abordagem proposta inclui duas etapas. Na primeira, as estimativas iniciais para os pesos são realizadas de forma interativa, por meio da utilização de informações espectrais somente. Em uma segunda etapa, os pesos estimados são refinados por meio de informações de contexto espacial. A metodologia proposta é avaliada através de experimentos que fazem uso de dados de imagens hiperespectrais AVIRIS. Os resultados são apresentados e discutidos. Sugestões para futuras pesquisas neste tópico também são apresentados.This dissertation deals with the problem of using parametric classifiers in high dimensional data settings. The advantages brought by high dimensional data are well known. Classes that are very similar can nonetheless be separated with a high degree of accuracy provided that the classification is performed in high dimensional data settings and that the classes’ covariance matrices differ significantly. Sensor system capable of acquiring high dimensional image data (hyperspectral image data) were in part developed to take advantage of this condition. In real world conditions, however, we have to face the problem of estimating a resulting large number of parameters with a generally limited number of samples. Training samples are usually expensive and time consuming to acquire. Different approaches to solve or at least mitigate this problem have been a topic of investigation by the international community in remote sensing. Among others, one possible approach that has been proposed in the literature consists in increasing the number of samples by adding semilabeled samples to the process of estimating the classifier’s parameters. The methodology investigated in this dissertation follows this general approach. The main focus in this study consists in investigating an approach to estimate the weights to be associated with the semilabeled samples. The proposed approach includes two steps. In the first one, initial estimates for the weights are performed in an iterative way, by making use of spectral information only. In a second step, the estimated weights are further adjusted by means of spatial context information. The proposed methodology is evaluated by experiments making use of AVIRIS hyperspectral image data. The results are presented and discussed. Suggestions for further research in this topic are also presented.application/pdfporSensoriamento remotoAmostras semi-rotuladasClassificationParameter estimationSpatial contextSemi-labeled samplesEstudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulCentro Estadual de Pesquisas em Sensoriamento Remoto e MeteorologiaPrograma de Pós-Graduação em Sensoriamento RemotoPorto Alegre, BR-RS2011mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000956755.pdf000956755.pdfTexto completoapplication/pdf6372151http://www.lume.ufrgs.br/bitstream/10183/115269/1/000956755.pdfdb0926a3bbf908bb9f1c2406d734505dMD51TEXT000956755.pdf.txt000956755.pdf.txtExtracted Texttext/plain170023http://www.lume.ufrgs.br/bitstream/10183/115269/2/000956755.pdf.txt523bc557da947e7e1ffad303ab025515MD52THUMBNAIL000956755.pdf.jpg000956755.pdf.jpgGenerated Thumbnailimage/jpeg997http://www.lume.ufrgs.br/bitstream/10183/115269/3/000956755.pdf.jpge5cecda510ce56cb654d60d686836506MD5310183/1152692021-12-09 05:34:32.750141oai:www.lume.ufrgs.br:10183/115269Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-12-09T07:34:32Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Estudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladas
title Estudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladas
spellingShingle Estudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladas
Grondona, Atilio Efrain Bica
Sensoriamento remoto
Amostras semi-rotuladas
Classification
Parameter estimation
Spatial context
Semi-labeled samples
title_short Estudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladas
title_full Estudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladas
title_fullStr Estudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladas
title_full_unstemmed Estudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladas
title_sort Estudo sobre o uso de informações espectrais e de contexto espacial na ponderação de amostras semi-rotuladas
author Grondona, Atilio Efrain Bica
author_facet Grondona, Atilio Efrain Bica
author_role author
dc.contributor.author.fl_str_mv Grondona, Atilio Efrain Bica
dc.contributor.advisor1.fl_str_mv Haertel, Vitor Francisco de Araújo
contributor_str_mv Haertel, Vitor Francisco de Araújo
dc.subject.por.fl_str_mv Sensoriamento remoto
Amostras semi-rotuladas
topic Sensoriamento remoto
Amostras semi-rotuladas
Classification
Parameter estimation
Spatial context
Semi-labeled samples
dc.subject.eng.fl_str_mv Classification
Parameter estimation
Spatial context
Semi-labeled samples
description Esta dissertação aborda o problema da utilização de classificadores paramétricos em dados de alta dimensionalidade. As vantagens trazidas pelos dados em alta dimensionalidade são bem conhecidas. Classes que são muito semelhantes podem, não obstante, ser separadas com um alto grau de acurácia desde que a classificação dos dados seja realizada em um espaço de alta dimensionalidade e que as matrizes de covariância das classes difiram significativamente. Sistemas sensores capazes de adquirir dados de imagem em alta dimensionalidade (dados de imagens hiperespectrais) foram, em parte, desenvolvidos para tirar proveito dessa condição. Nas condições do mundo real, no entanto, temos de enfrentar o problema de estimar um grande número de parâmetros, geralmente, com um número limitado de amostras. Amostras de treinamento são geralmente caras e demoradas para adquirir. Diferentes abordagens para resolver ou, pelo menos, atenuar este problema tem sido um tópico de investigação por parte da comunidade internacional em sensoriamento remoto. Entre outras, uma possível abordagem que tem sido proposta na literatura consiste em aumentar o número de amostras pela adição de amostras semi-rotuladas ao processo de estimação dos parâmetros do classificador. A metodologia investigada nesta dissertação segue esta abordagem geral. O foco principal deste estudo consiste em investigar uma abordagem para estimar os pesos a serem associados às amostras semi-rotuladas. A abordagem proposta inclui duas etapas. Na primeira, as estimativas iniciais para os pesos são realizadas de forma interativa, por meio da utilização de informações espectrais somente. Em uma segunda etapa, os pesos estimados são refinados por meio de informações de contexto espacial. A metodologia proposta é avaliada através de experimentos que fazem uso de dados de imagens hiperespectrais AVIRIS. Os resultados são apresentados e discutidos. Sugestões para futuras pesquisas neste tópico também são apresentados.
publishDate 2011
dc.date.issued.fl_str_mv 2011
dc.date.accessioned.fl_str_mv 2015-04-14T01:57:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/115269
dc.identifier.nrb.pt_BR.fl_str_mv 000956755
url http://hdl.handle.net/10183/115269
identifier_str_mv 000956755
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/115269/1/000956755.pdf
http://www.lume.ufrgs.br/bitstream/10183/115269/2/000956755.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/115269/3/000956755.pdf.jpg
bitstream.checksum.fl_str_mv db0926a3bbf908bb9f1c2406d734505d
523bc557da947e7e1ffad303ab025515
e5cecda510ce56cb654d60d686836506
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085316122378240