Modelagem hidrológica com uso da estimativa de chuva por sensoriamento remoto

Detalhes bibliográficos
Autor(a) principal: Quiroz Jiménez, Karena
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/49176
Resumo: As estimativas de chuva por meio do sensoriamento remoto são, atualmente, fonte potencialmente útil para as mais diversas aplicações hidrológicas e climatológicas, especialmente em regiões onde as medições convencionais são escassas, como a Amazônia. Neste trabalho, foram analisadas as estimativas de chuva por satélite como variáveis de entrada ao modelo hidrológico MGB-IPH (Collischonn, 2001). Este modelo simula o ciclo hidrológico através das relações físicas e conceituais de todo processo, sendo os produtos de chuva por satélite avaliados o 3B42, 3B42RT e CMORPH. A primeira área de estudo é a bacia do rio Huallaga localizada dentro do território do Peru, região caracterizada por ter uma topografia complexa e pertencente a uma das nascentes do rio Amazonas. A segunda avaliação foi feita para a bacia do rio Amazonas, sendo esta caracterizada por ter uma grande variabilidade climatológica a diferentes altitudes e regimes hidrológicos diferentes, além de uma pobre distribuição de postos pluviométricos. No caso da bacia do rio Huallaga foram realizadas comparações da chuva média estimada por satélite com observada em intervalos de tempo diário, mensal, sazonal e anual. Estes resultados mostram que os produtos 3B42 e CMORPH subestimam valores médios da bacia comparada com chuva média ponderada por pluviômetros. Na simulação da bacia do rio Huallaga se efetuaram calibrações dos parâmetros para cada fonte de chuva resultando com melhor ajuste de vazões máximas para o produto CMORPH e pior ajuste para o produto 3B42, estes ajustes melhoraram para a chuva do produto CMORPH corrigido com estações pluviométricas. Por outra parte, no caso de análises da bacia do rio Amazonas, foi calculada a chuva média anual para os três produtos de satélite (3B42, 3B42RT e CMORPH), os resultados mostraram maior chuva média a favor de CMORPH, seguido de 3B42RT e finalmente o produto 3B42. A simulação da bacia do rio Amazonas mostrou melhores coeficientes de Nash-Sutcliffe com o produto 3B42 em várias estações do Brasil. Com o produto 3B42RT mostram melhores coeficientes nas estações localizadas na rede principal do rio Amazonas, e com o produto CMORPH mostrou melhores coeficientes em algumas estações como na bacia dos rios Tapajós (Brasil) e Urubamba (Peru).
id URGS_6a1b6dcc68aa62e54a8a94654958567c
oai_identifier_str oai:www.lume.ufrgs.br:10183/49176
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Quiroz Jiménez, KarenaCollischonn, WalterLavado Casimiro, Waldo2012-05-24T01:32:27Z2011http://hdl.handle.net/10183/49176000820280As estimativas de chuva por meio do sensoriamento remoto são, atualmente, fonte potencialmente útil para as mais diversas aplicações hidrológicas e climatológicas, especialmente em regiões onde as medições convencionais são escassas, como a Amazônia. Neste trabalho, foram analisadas as estimativas de chuva por satélite como variáveis de entrada ao modelo hidrológico MGB-IPH (Collischonn, 2001). Este modelo simula o ciclo hidrológico através das relações físicas e conceituais de todo processo, sendo os produtos de chuva por satélite avaliados o 3B42, 3B42RT e CMORPH. A primeira área de estudo é a bacia do rio Huallaga localizada dentro do território do Peru, região caracterizada por ter uma topografia complexa e pertencente a uma das nascentes do rio Amazonas. A segunda avaliação foi feita para a bacia do rio Amazonas, sendo esta caracterizada por ter uma grande variabilidade climatológica a diferentes altitudes e regimes hidrológicos diferentes, além de uma pobre distribuição de postos pluviométricos. No caso da bacia do rio Huallaga foram realizadas comparações da chuva média estimada por satélite com observada em intervalos de tempo diário, mensal, sazonal e anual. Estes resultados mostram que os produtos 3B42 e CMORPH subestimam valores médios da bacia comparada com chuva média ponderada por pluviômetros. Na simulação da bacia do rio Huallaga se efetuaram calibrações dos parâmetros para cada fonte de chuva resultando com melhor ajuste de vazões máximas para o produto CMORPH e pior ajuste para o produto 3B42, estes ajustes melhoraram para a chuva do produto CMORPH corrigido com estações pluviométricas. Por outra parte, no caso de análises da bacia do rio Amazonas, foi calculada a chuva média anual para os três produtos de satélite (3B42, 3B42RT e CMORPH), os resultados mostraram maior chuva média a favor de CMORPH, seguido de 3B42RT e finalmente o produto 3B42. A simulação da bacia do rio Amazonas mostrou melhores coeficientes de Nash-Sutcliffe com o produto 3B42 em várias estações do Brasil. Com o produto 3B42RT mostram melhores coeficientes nas estações localizadas na rede principal do rio Amazonas, e com o produto CMORPH mostrou melhores coeficientes em algumas estações como na bacia dos rios Tapajós (Brasil) e Urubamba (Peru).Currently, satellite rainfall estimates using remote sensing are a potential source of information for hydrological and climatological applications. It applies mainly for regions where conventional measurements are scarce such as the Amazon Basin. In this work, the satellite rainfall estimates were analyzed as input variables to the hydrological model MGBIPH (Collischonn, 2001). This model simulates the hydrological cycle through physical and conceptual relationships where products 3B42, 3B42RT and CMORPH are evaluated. The first evaluation case corresponds to the Huallaga basin located in Peru, being one of the current Amazon highlands characterized by a complex topography. The second evaluation case corresponds to the Amazon basin characterized by a great climatological variability at different altitudes, different hydrological regimes and poor distributions of raingauges. In the case of the Huallaga River basin, comparisons were made between the estimated average satellite rainfall and the observed rainfall for different intervals of time (daily, monthly, seasonal and annual). These results show that the products 3B42 and CMORPH underestimate the basin average rainfall when compared with the weighted average of raingauge measurements. During the Huallaga basin simulation, calibrations of some parameters for each rainfall data were realized. Obtaining the best and worst fitting results with the CMORPH and 3B42 products for the case of maximum discharges, respectively. This rainfall fitting improves for the CMORPH product when raingauge corrections are included. On the other hand, the annual average rainfall value was obtained for each satellite product (3B42, 3B42RT e CMORPH) for the analysis of the Amazon basin. In this calculation, the greater results for the annual average rainfall values are obtained in the following order CMORPH, 3B42RT and 3B42. Moreover, this simulation seems to yield best Nash-Sutcliffe coefficients for the 3B42 product for various Brazilian stations. For stations located in the main stream of the Amazon River the Nash-Sutcliffe coefficients obtained with the 3B42RT product are the best. The CMORPH product yield the best coefficients for the stations located in Tapajós (Brazil) and Urubamba (Peru) basin.application/pdfporModelos hidrológicosSensoriamento remotoChuva : VazãoAmazonas, Rio, BaciaRemote sensingSatellite rainfallHydrological modelAmazon basin3B423B42RTCMORPHModelagem hidrológica com uso da estimativa de chuva por sensoriamento remotoModeling hidrological with use rainfall estimates of remote sensing info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de Pesquisas HidráulicasPrograma de Pós-Graduação em Recursos Hídricos e Saneamento AmbientalPorto Alegre, BR-RS2011mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000820280.pdf000820280.pdfTexto completoapplication/pdf10354949http://www.lume.ufrgs.br/bitstream/10183/49176/1/000820280.pdf41f628279b83d9383bf36721ea0d9b56MD51TEXT000820280.pdf.txt000820280.pdf.txtExtracted Texttext/plain238062http://www.lume.ufrgs.br/bitstream/10183/49176/2/000820280.pdf.txtd417be042415947d70ed6fdc3d590871MD52THUMBNAIL000820280.pdf.jpg000820280.pdf.jpgGenerated Thumbnailimage/jpeg1333http://www.lume.ufrgs.br/bitstream/10183/49176/3/000820280.pdf.jpg359c2ffe486277be3ef31eb8c532b306MD5310183/491762018-10-05 08:42:05.122oai:www.lume.ufrgs.br:10183/49176Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-05T11:42:05Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Modelagem hidrológica com uso da estimativa de chuva por sensoriamento remoto
dc.title.alternative.en.fl_str_mv Modeling hidrological with use rainfall estimates of remote sensing
title Modelagem hidrológica com uso da estimativa de chuva por sensoriamento remoto
spellingShingle Modelagem hidrológica com uso da estimativa de chuva por sensoriamento remoto
Quiroz Jiménez, Karena
Modelos hidrológicos
Sensoriamento remoto
Chuva : Vazão
Amazonas, Rio, Bacia
Remote sensing
Satellite rainfall
Hydrological model
Amazon basin
3B42
3B42RT
CMORPH
title_short Modelagem hidrológica com uso da estimativa de chuva por sensoriamento remoto
title_full Modelagem hidrológica com uso da estimativa de chuva por sensoriamento remoto
title_fullStr Modelagem hidrológica com uso da estimativa de chuva por sensoriamento remoto
title_full_unstemmed Modelagem hidrológica com uso da estimativa de chuva por sensoriamento remoto
title_sort Modelagem hidrológica com uso da estimativa de chuva por sensoriamento remoto
author Quiroz Jiménez, Karena
author_facet Quiroz Jiménez, Karena
author_role author
dc.contributor.author.fl_str_mv Quiroz Jiménez, Karena
dc.contributor.advisor1.fl_str_mv Collischonn, Walter
dc.contributor.advisor-co1.fl_str_mv Lavado Casimiro, Waldo
contributor_str_mv Collischonn, Walter
Lavado Casimiro, Waldo
dc.subject.por.fl_str_mv Modelos hidrológicos
Sensoriamento remoto
Chuva : Vazão
Amazonas, Rio, Bacia
topic Modelos hidrológicos
Sensoriamento remoto
Chuva : Vazão
Amazonas, Rio, Bacia
Remote sensing
Satellite rainfall
Hydrological model
Amazon basin
3B42
3B42RT
CMORPH
dc.subject.eng.fl_str_mv Remote sensing
Satellite rainfall
Hydrological model
Amazon basin
3B42
3B42RT
CMORPH
description As estimativas de chuva por meio do sensoriamento remoto são, atualmente, fonte potencialmente útil para as mais diversas aplicações hidrológicas e climatológicas, especialmente em regiões onde as medições convencionais são escassas, como a Amazônia. Neste trabalho, foram analisadas as estimativas de chuva por satélite como variáveis de entrada ao modelo hidrológico MGB-IPH (Collischonn, 2001). Este modelo simula o ciclo hidrológico através das relações físicas e conceituais de todo processo, sendo os produtos de chuva por satélite avaliados o 3B42, 3B42RT e CMORPH. A primeira área de estudo é a bacia do rio Huallaga localizada dentro do território do Peru, região caracterizada por ter uma topografia complexa e pertencente a uma das nascentes do rio Amazonas. A segunda avaliação foi feita para a bacia do rio Amazonas, sendo esta caracterizada por ter uma grande variabilidade climatológica a diferentes altitudes e regimes hidrológicos diferentes, além de uma pobre distribuição de postos pluviométricos. No caso da bacia do rio Huallaga foram realizadas comparações da chuva média estimada por satélite com observada em intervalos de tempo diário, mensal, sazonal e anual. Estes resultados mostram que os produtos 3B42 e CMORPH subestimam valores médios da bacia comparada com chuva média ponderada por pluviômetros. Na simulação da bacia do rio Huallaga se efetuaram calibrações dos parâmetros para cada fonte de chuva resultando com melhor ajuste de vazões máximas para o produto CMORPH e pior ajuste para o produto 3B42, estes ajustes melhoraram para a chuva do produto CMORPH corrigido com estações pluviométricas. Por outra parte, no caso de análises da bacia do rio Amazonas, foi calculada a chuva média anual para os três produtos de satélite (3B42, 3B42RT e CMORPH), os resultados mostraram maior chuva média a favor de CMORPH, seguido de 3B42RT e finalmente o produto 3B42. A simulação da bacia do rio Amazonas mostrou melhores coeficientes de Nash-Sutcliffe com o produto 3B42 em várias estações do Brasil. Com o produto 3B42RT mostram melhores coeficientes nas estações localizadas na rede principal do rio Amazonas, e com o produto CMORPH mostrou melhores coeficientes em algumas estações como na bacia dos rios Tapajós (Brasil) e Urubamba (Peru).
publishDate 2011
dc.date.issued.fl_str_mv 2011
dc.date.accessioned.fl_str_mv 2012-05-24T01:32:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/49176
dc.identifier.nrb.pt_BR.fl_str_mv 000820280
url http://hdl.handle.net/10183/49176
identifier_str_mv 000820280
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/49176/1/000820280.pdf
http://www.lume.ufrgs.br/bitstream/10183/49176/2/000820280.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/49176/3/000820280.pdf.jpg
bitstream.checksum.fl_str_mv 41f628279b83d9383bf36721ea0d9b56
d417be042415947d70ed6fdc3d590871
359c2ffe486277be3ef31eb8c532b306
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085226866540544