Avaliação da qualidade de funções de similaridade no contexto de consultas por abrangência

Detalhes bibliográficos
Autor(a) principal: Stasiu, Raquel Kolitski
Data de Publicação: 2007
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/12074
Resumo: Em sistemas reais, os dados armazenados tipicamente apresentam inconsistências causadas por erros de gra a, abreviações, caracteres trocados, entre outros. Isto faz com que diferentes representações do mesmo objeto do mundo real sejam registrados como elementos distintos, causando um problema no momento de consultar os dados. Portanto, o problema investigado nesta tese refere-se às consultas por abrangência, que procuram encontrar objetos que representam o mesmo objeto real consultado . Esse tipo de consulta não pode ser processado por coincidência exata, necessitando de um mecanismo de consulta com suporte à similaridade. Para cada consulta submetida a uma determinada coleção, a função de similaridade produz um ranking dos elementos dessa coleção ordenados pelo valor de similaridade entre cada elemento e o objeto consulta. Como somente os elementos que são variações do objeto consulta são relevantes e deveriam ser retornados, é necessário o uso de um limiar para delimitar o resultado. O primeiro desa o das consultas por abrangência é a de nição do limiar. Geralmente é o especialista humano que faz a estimativa manualmente através da identi - cação de elementos relevantes e irrelevantes para cada consulta e em seguida, utiliza uma medida como revocação e precisão (R&P). A alta dependência do especialista humano di culta o uso de consultas por abrangência na prática, principalmente em grandes coleções. Por esta razão, o método apresentado nesta tese tem por objetivo estimar R&P para vários limiares com baixa dependência do especialista humano. Como um sub-produto do método, também é possível selecionar o limiar mais adequado para uma função sobre uma determinada coleção. Considerando que as funções de similaridade são imperfeitas e que apresentam níveis diferentes de qualidade, é necessário avaliar a função de similaridade para cada coleção, pois o resultado é dependente dos dados. Um limiar para uma coleção pode ser totalmente inadequado para outra coleção, embora utilizando a mesma função de similaridade. Como forma de medir a qualidade de funções de similaridade no contexto de consultas por abrangência, esta tese apresenta a discernibilidade. Trata-se de uma medida que de ne a habilidade da função de similaridade de separar elementos relevantes e irrelevantes. Comparando com a precisão média, a discernibilidade captura variações que não são percebidas pela precisão média, o que mostra que a discernibilidade é mais apropriada para consultas por abrangência. Uma extensa avaliação experimental usando dados reais mostra a viabilidade tanto do método de estimativas como da medida de discernibilidade para consultas por abrangência.
id URGS_6cec83ea6f52a865e1513d0c27c604e9
oai_identifier_str oai:www.lume.ufrgs.br:10183/12074
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Stasiu, Raquel KolitskiHeuser, Carlos Alberto2008-03-08T04:12:17Z2007http://hdl.handle.net/10183/12074000622625Em sistemas reais, os dados armazenados tipicamente apresentam inconsistências causadas por erros de gra a, abreviações, caracteres trocados, entre outros. Isto faz com que diferentes representações do mesmo objeto do mundo real sejam registrados como elementos distintos, causando um problema no momento de consultar os dados. Portanto, o problema investigado nesta tese refere-se às consultas por abrangência, que procuram encontrar objetos que representam o mesmo objeto real consultado . Esse tipo de consulta não pode ser processado por coincidência exata, necessitando de um mecanismo de consulta com suporte à similaridade. Para cada consulta submetida a uma determinada coleção, a função de similaridade produz um ranking dos elementos dessa coleção ordenados pelo valor de similaridade entre cada elemento e o objeto consulta. Como somente os elementos que são variações do objeto consulta são relevantes e deveriam ser retornados, é necessário o uso de um limiar para delimitar o resultado. O primeiro desa o das consultas por abrangência é a de nição do limiar. Geralmente é o especialista humano que faz a estimativa manualmente através da identi - cação de elementos relevantes e irrelevantes para cada consulta e em seguida, utiliza uma medida como revocação e precisão (R&P). A alta dependência do especialista humano di culta o uso de consultas por abrangência na prática, principalmente em grandes coleções. Por esta razão, o método apresentado nesta tese tem por objetivo estimar R&P para vários limiares com baixa dependência do especialista humano. Como um sub-produto do método, também é possível selecionar o limiar mais adequado para uma função sobre uma determinada coleção. Considerando que as funções de similaridade são imperfeitas e que apresentam níveis diferentes de qualidade, é necessário avaliar a função de similaridade para cada coleção, pois o resultado é dependente dos dados. Um limiar para uma coleção pode ser totalmente inadequado para outra coleção, embora utilizando a mesma função de similaridade. Como forma de medir a qualidade de funções de similaridade no contexto de consultas por abrangência, esta tese apresenta a discernibilidade. Trata-se de uma medida que de ne a habilidade da função de similaridade de separar elementos relevantes e irrelevantes. Comparando com a precisão média, a discernibilidade captura variações que não são percebidas pela precisão média, o que mostra que a discernibilidade é mais apropriada para consultas por abrangência. Uma extensa avaliação experimental usando dados reais mostra a viabilidade tanto do método de estimativas como da medida de discernibilidade para consultas por abrangência.In real systems, stored data typically have inconsistencies caused by typing errors, abbreviations, transposed characters, amongst others. For this reason, di erent representations of the same real world object are stored as distinct elements, causing problems during query processing. In this sense, this thesis investigates range queries which nd objects that represent the same real world object being queried . This type of query cannot be processed by exact matching, thus requiring the support for querying by similarity. For each query submitted to a given collection, the similarity function produces a ranked list of all elements in this collection. This ranked list is sorted decreasingly by the similarity score value with the query object. Only the variations of the query object should be part of the result as only those items are relevant. For this reason, it is necessary to apply a threshold value to properly split the ranking. The rst challenge of range queries is the de nition of a proper threshold. Usually, a human specialist makes the estimation manually through the identi cation of relevant and irrelevant elements for each query. Then, he/she uses measures such as recall and precision (R&P). The high dependency on the human specialist is the main di culty related to use of range queries in real situations, specially for large collections. In this sense, the method presented in this thesis has the objective of estimating R&P at several thresholds with low human intervention. As a by-product of this method, it is possible to select the optimal threshold for a similarity function in a given collection. Considering the fact that the similarity functions are imperfect and vary in quality, it is necessary to evaluate the similarity function for each collection as the result is domain dependent. A threshold value for a collection could be totally inappropriate for another, even though the same similarity function is applied. As a measure of quality of similarity functions for range queries, this thesis introduces discernability. This is a measure to quantify the ability of the similarity function in separating relevant and irrelevant elements. Comparing discernability and mean average precision, the rst one can capture variations that are not noticed by precision-based measures. This property shows that discernability presents better results for evaluating similarity functions for range queries. An extended experimental evaluation using real data shows the viability of both, the estimation method and the discernability measure, applied to range queries.application/pdfporRecuperacao : InformacaoMétricas : SimilaridadeBanco : DadosQuality evaluationSimilarity queriesSimilarity functionRange queriesThreshold estimationAvaliação da qualidade de funções de similaridade no contexto de consultas por abrangênciaQuality evaluation of similarity functions for range queries info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2007doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000622625.pdf.txt000622625.pdf.txtExtracted Texttext/plain286080http://www.lume.ufrgs.br/bitstream/10183/12074/2/000622625.pdf.txt210648214952bbf400eb83358c2364c5MD52ORIGINAL000622625.pdf000622625.pdfTexto completoapplication/pdf3247910http://www.lume.ufrgs.br/bitstream/10183/12074/1/000622625.pdf5ff14ceccda1018940c3d4f533a30730MD51THUMBNAIL000622625.pdf.jpg000622625.pdf.jpgGenerated Thumbnailimage/jpeg1022http://www.lume.ufrgs.br/bitstream/10183/12074/3/000622625.pdf.jpga6a466246d579ae92d29bac9fc90796bMD5310183/120742018-10-17 08:11:07.287oai:www.lume.ufrgs.br:10183/12074Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-17T11:11:07Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Avaliação da qualidade de funções de similaridade no contexto de consultas por abrangência
dc.title.alternative.en.fl_str_mv Quality evaluation of similarity functions for range queries
title Avaliação da qualidade de funções de similaridade no contexto de consultas por abrangência
spellingShingle Avaliação da qualidade de funções de similaridade no contexto de consultas por abrangência
Stasiu, Raquel Kolitski
Recuperacao : Informacao
Métricas : Similaridade
Banco : Dados
Quality evaluation
Similarity queries
Similarity function
Range queries
Threshold estimation
title_short Avaliação da qualidade de funções de similaridade no contexto de consultas por abrangência
title_full Avaliação da qualidade de funções de similaridade no contexto de consultas por abrangência
title_fullStr Avaliação da qualidade de funções de similaridade no contexto de consultas por abrangência
title_full_unstemmed Avaliação da qualidade de funções de similaridade no contexto de consultas por abrangência
title_sort Avaliação da qualidade de funções de similaridade no contexto de consultas por abrangência
author Stasiu, Raquel Kolitski
author_facet Stasiu, Raquel Kolitski
author_role author
dc.contributor.author.fl_str_mv Stasiu, Raquel Kolitski
dc.contributor.advisor1.fl_str_mv Heuser, Carlos Alberto
contributor_str_mv Heuser, Carlos Alberto
dc.subject.por.fl_str_mv Recuperacao : Informacao
Métricas : Similaridade
Banco : Dados
topic Recuperacao : Informacao
Métricas : Similaridade
Banco : Dados
Quality evaluation
Similarity queries
Similarity function
Range queries
Threshold estimation
dc.subject.eng.fl_str_mv Quality evaluation
Similarity queries
Similarity function
Range queries
Threshold estimation
description Em sistemas reais, os dados armazenados tipicamente apresentam inconsistências causadas por erros de gra a, abreviações, caracteres trocados, entre outros. Isto faz com que diferentes representações do mesmo objeto do mundo real sejam registrados como elementos distintos, causando um problema no momento de consultar os dados. Portanto, o problema investigado nesta tese refere-se às consultas por abrangência, que procuram encontrar objetos que representam o mesmo objeto real consultado . Esse tipo de consulta não pode ser processado por coincidência exata, necessitando de um mecanismo de consulta com suporte à similaridade. Para cada consulta submetida a uma determinada coleção, a função de similaridade produz um ranking dos elementos dessa coleção ordenados pelo valor de similaridade entre cada elemento e o objeto consulta. Como somente os elementos que são variações do objeto consulta são relevantes e deveriam ser retornados, é necessário o uso de um limiar para delimitar o resultado. O primeiro desa o das consultas por abrangência é a de nição do limiar. Geralmente é o especialista humano que faz a estimativa manualmente através da identi - cação de elementos relevantes e irrelevantes para cada consulta e em seguida, utiliza uma medida como revocação e precisão (R&P). A alta dependência do especialista humano di culta o uso de consultas por abrangência na prática, principalmente em grandes coleções. Por esta razão, o método apresentado nesta tese tem por objetivo estimar R&P para vários limiares com baixa dependência do especialista humano. Como um sub-produto do método, também é possível selecionar o limiar mais adequado para uma função sobre uma determinada coleção. Considerando que as funções de similaridade são imperfeitas e que apresentam níveis diferentes de qualidade, é necessário avaliar a função de similaridade para cada coleção, pois o resultado é dependente dos dados. Um limiar para uma coleção pode ser totalmente inadequado para outra coleção, embora utilizando a mesma função de similaridade. Como forma de medir a qualidade de funções de similaridade no contexto de consultas por abrangência, esta tese apresenta a discernibilidade. Trata-se de uma medida que de ne a habilidade da função de similaridade de separar elementos relevantes e irrelevantes. Comparando com a precisão média, a discernibilidade captura variações que não são percebidas pela precisão média, o que mostra que a discernibilidade é mais apropriada para consultas por abrangência. Uma extensa avaliação experimental usando dados reais mostra a viabilidade tanto do método de estimativas como da medida de discernibilidade para consultas por abrangência.
publishDate 2007
dc.date.issued.fl_str_mv 2007
dc.date.accessioned.fl_str_mv 2008-03-08T04:12:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/12074
dc.identifier.nrb.pt_BR.fl_str_mv 000622625
url http://hdl.handle.net/10183/12074
identifier_str_mv 000622625
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/12074/2/000622625.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/12074/1/000622625.pdf
http://www.lume.ufrgs.br/bitstream/10183/12074/3/000622625.pdf.jpg
bitstream.checksum.fl_str_mv 210648214952bbf400eb83358c2364c5
5ff14ceccda1018940c3d4f533a30730
a6a466246d579ae92d29bac9fc90796b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085111882842112