Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa

Detalhes bibliográficos
Autor(a) principal: Torres, Bruna Gaelzer Silva
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/159488
Resumo: Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes.
id URGS_6dac91e8a51f4a4fcef46b7d70ce9ad6
oai_identifier_str oai:www.lume.ufrgs.br:10183/159488
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Torres, Bruna Gaelzer SilvaDalla Costa, Teresa Cristina TavaresMacedo, Alexandre JoséFriberg, Lena2017-06-14T02:32:41Z2016http://hdl.handle.net/10183/159488001017389Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes.Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.application/pdfporCiprofloxacinoFarmacocinéticaFarmacodinâmicaPseudomonas aeruginosaBiofilm-associated infectionsP. aeruginosaCiprofloxacinInfected lung microdialysisPopPK modelingTime-kill curvesSemi-mechanistic PK/PD modelingModelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosaPharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulFaculdade de FarmáciaPrograma de Pós-Graduação em Ciências FarmacêuticasPorto Alegre, BR-RS2016doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001017389.pdf001017389.pdfTexto parcialapplication/pdf1677283http://www.lume.ufrgs.br/bitstream/10183/159488/1/001017389.pdf2910040dd04501fe8b8b110a379916e4MD51TEXT001017389.pdf.txt001017389.pdf.txtExtracted Texttext/plain107067http://www.lume.ufrgs.br/bitstream/10183/159488/2/001017389.pdf.txtc82ab7d3d69171bc5c2446dae806bde0MD52THUMBNAIL001017389.pdf.jpg001017389.pdf.jpgGenerated Thumbnailimage/jpeg1149http://www.lume.ufrgs.br/bitstream/10183/159488/3/001017389.pdf.jpgc806cfb6130157a124ec9d11993018b1MD5310183/1594882022-01-07 05:26:30.486351oai:www.lume.ufrgs.br:10183/159488Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-01-07T07:26:30Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa
dc.title.alternative.en.fl_str_mv Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection
title Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa
spellingShingle Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa
Torres, Bruna Gaelzer Silva
Ciprofloxacino
Farmacocinética
Farmacodinâmica
Pseudomonas aeruginosa
Biofilm-associated infections
P. aeruginosa
Ciprofloxacin
Infected lung microdialysis
PopPK modeling
Time-kill curves
Semi-mechanistic PK/PD modeling
title_short Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa
title_full Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa
title_fullStr Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa
title_full_unstemmed Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa
title_sort Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa
author Torres, Bruna Gaelzer Silva
author_facet Torres, Bruna Gaelzer Silva
author_role author
dc.contributor.author.fl_str_mv Torres, Bruna Gaelzer Silva
dc.contributor.advisor1.fl_str_mv Dalla Costa, Teresa Cristina Tavares
dc.contributor.advisor-co1.fl_str_mv Macedo, Alexandre José
Friberg, Lena
contributor_str_mv Dalla Costa, Teresa Cristina Tavares
Macedo, Alexandre José
Friberg, Lena
dc.subject.por.fl_str_mv Ciprofloxacino
Farmacocinética
Farmacodinâmica
Pseudomonas aeruginosa
topic Ciprofloxacino
Farmacocinética
Farmacodinâmica
Pseudomonas aeruginosa
Biofilm-associated infections
P. aeruginosa
Ciprofloxacin
Infected lung microdialysis
PopPK modeling
Time-kill curves
Semi-mechanistic PK/PD modeling
dc.subject.eng.fl_str_mv Biofilm-associated infections
P. aeruginosa
Ciprofloxacin
Infected lung microdialysis
PopPK modeling
Time-kill curves
Semi-mechanistic PK/PD modeling
description Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes.
publishDate 2016
dc.date.issued.fl_str_mv 2016
dc.date.accessioned.fl_str_mv 2017-06-14T02:32:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/159488
dc.identifier.nrb.pt_BR.fl_str_mv 001017389
url http://hdl.handle.net/10183/159488
identifier_str_mv 001017389
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/159488/1/001017389.pdf
http://www.lume.ufrgs.br/bitstream/10183/159488/2/001017389.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/159488/3/001017389.pdf.jpg
bitstream.checksum.fl_str_mv 2910040dd04501fe8b8b110a379916e4
c82ab7d3d69171bc5c2446dae806bde0
c806cfb6130157a124ec9d11993018b1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1800309107696074752