Online incremental one-shot learning of temporal sequences
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/49063 |
Resumo: | Este trabalho introduz novos algoritmos de redes neurais para o processamento online de padrões espaço-temporais, estendendo o algoritmo Incremental Gaussian Mixture Network (IGMN). O algoritmo IGMN é uma rede neural online incremental que aprende a partir de uma única passada através de dados por meio de uma versão incremental do algoritmo Expectation-Maximization (EM) combinado com regressão localmente ponderada (Locally Weighted Regression, LWR). Quatro abordagens diferentes são usadas para dar capacidade de processamento temporal para o algoritmo IGMN: linhas de atraso (Time-Delay IGMN), uma camada de reservoir (Echo-State IGMN), média móvel exponencial do vetor de entrada reconstruído (Merge IGMN) e auto-referência (Recursive IGMN). Isso resulta em algoritmos que são online, incrementais, agressivos e têm capacidades temporais e, portanto, são adequados para tarefas com memória ou estados internos desconhecidos, caracterizados por fluxo contínuo ininterrupto de dados, e que exigem operação perpétua provendo previsões sem etapas separadas para aprendizado e execução. Os algoritmos propostos são comparados a outras redes neurais espaço-temporais em 8 tarefas de previsão de séries temporais. Dois deles mostram desempenhos satisfatórios, em geral, superando as abordagens existentes. Uma melhoria geral para o algoritmo IGMN também é descrita, eliminando um dos parâmetros ajustáveis manualmente e provendo melhores resultados. |
id |
URGS_72aff5b68bef5331de981287831dedbf |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/49063 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Pinto, Rafael CoimbraEngel, Paulo Martins2012-05-22T01:35:09Z2011http://hdl.handle.net/10183/49063000828247Este trabalho introduz novos algoritmos de redes neurais para o processamento online de padrões espaço-temporais, estendendo o algoritmo Incremental Gaussian Mixture Network (IGMN). O algoritmo IGMN é uma rede neural online incremental que aprende a partir de uma única passada através de dados por meio de uma versão incremental do algoritmo Expectation-Maximization (EM) combinado com regressão localmente ponderada (Locally Weighted Regression, LWR). Quatro abordagens diferentes são usadas para dar capacidade de processamento temporal para o algoritmo IGMN: linhas de atraso (Time-Delay IGMN), uma camada de reservoir (Echo-State IGMN), média móvel exponencial do vetor de entrada reconstruído (Merge IGMN) e auto-referência (Recursive IGMN). Isso resulta em algoritmos que são online, incrementais, agressivos e têm capacidades temporais e, portanto, são adequados para tarefas com memória ou estados internos desconhecidos, caracterizados por fluxo contínuo ininterrupto de dados, e que exigem operação perpétua provendo previsões sem etapas separadas para aprendizado e execução. Os algoritmos propostos são comparados a outras redes neurais espaço-temporais em 8 tarefas de previsão de séries temporais. Dois deles mostram desempenhos satisfatórios, em geral, superando as abordagens existentes. Uma melhoria geral para o algoritmo IGMN também é descrita, eliminando um dos parâmetros ajustáveis manualmente e provendo melhores resultados.This work introduces novel neural networks algorithms for online spatio-temporal pattern processing by extending the Incremental Gaussian Mixture Network (IGMN). The IGMN algorithm is an online incremental neural network that learns from a single scan through data by means of an incremental version of the Expectation-Maximization (EM) algorithm combined with locally weighted regression (LWR). Four different approaches are used to give temporal processing capabilities to the IGMN algorithm: time-delay lines (Time-Delay IGMN), a reservoir layer (Echo-State IGMN), exponential moving average of reconstructed input vector (Merge IGMN) and self-referencing (Recursive IGMN). This results in algorithms that are online, incremental, aggressive and have temporal capabilities, and therefore are suitable for tasks with memory or unknown internal states, characterized by continuous non-stopping data-flows, and that require life-long learning while operating and giving predictions without separated stages. The proposed algorithms are compared to other spatio-temporal neural networks in 8 time-series prediction tasks. Two of them show satisfactory performances, generally improving upon existing approaches. A general enhancement for the IGMN algorithm is also described, eliminating one of the algorithm’s manually tunable parameters and giving better results.application/pdfengInteligência artificialRedes neuraisNeural networksSpatio-temporal pattern processingGaussian mixturesReservoir computingTime-series predictionOnline incremental one-shot learning of temporal sequencesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2011mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000828247.pdf000828247.pdfTexto completo (inglês)application/pdf3483448http://www.lume.ufrgs.br/bitstream/10183/49063/1/000828247.pdf9318c677841a2f279c978a248f6f38b9MD51TEXT000828247.pdf.txt000828247.pdf.txtExtracted Texttext/plain195772http://www.lume.ufrgs.br/bitstream/10183/49063/2/000828247.pdf.txt30552434887ca6def6887eec52800899MD52THUMBNAIL000828247.pdf.jpg000828247.pdf.jpgGenerated Thumbnailimage/jpeg1015http://www.lume.ufrgs.br/bitstream/10183/49063/3/000828247.pdf.jpgbd9faae329c70e18daaa06f44d4081c1MD5310183/490632021-05-26 04:34:09.773415oai:www.lume.ufrgs.br:10183/49063Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:34:09Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Online incremental one-shot learning of temporal sequences |
title |
Online incremental one-shot learning of temporal sequences |
spellingShingle |
Online incremental one-shot learning of temporal sequences Pinto, Rafael Coimbra Inteligência artificial Redes neurais Neural networks Spatio-temporal pattern processing Gaussian mixtures Reservoir computing Time-series prediction |
title_short |
Online incremental one-shot learning of temporal sequences |
title_full |
Online incremental one-shot learning of temporal sequences |
title_fullStr |
Online incremental one-shot learning of temporal sequences |
title_full_unstemmed |
Online incremental one-shot learning of temporal sequences |
title_sort |
Online incremental one-shot learning of temporal sequences |
author |
Pinto, Rafael Coimbra |
author_facet |
Pinto, Rafael Coimbra |
author_role |
author |
dc.contributor.author.fl_str_mv |
Pinto, Rafael Coimbra |
dc.contributor.advisor1.fl_str_mv |
Engel, Paulo Martins |
contributor_str_mv |
Engel, Paulo Martins |
dc.subject.por.fl_str_mv |
Inteligência artificial Redes neurais |
topic |
Inteligência artificial Redes neurais Neural networks Spatio-temporal pattern processing Gaussian mixtures Reservoir computing Time-series prediction |
dc.subject.eng.fl_str_mv |
Neural networks Spatio-temporal pattern processing Gaussian mixtures Reservoir computing Time-series prediction |
description |
Este trabalho introduz novos algoritmos de redes neurais para o processamento online de padrões espaço-temporais, estendendo o algoritmo Incremental Gaussian Mixture Network (IGMN). O algoritmo IGMN é uma rede neural online incremental que aprende a partir de uma única passada através de dados por meio de uma versão incremental do algoritmo Expectation-Maximization (EM) combinado com regressão localmente ponderada (Locally Weighted Regression, LWR). Quatro abordagens diferentes são usadas para dar capacidade de processamento temporal para o algoritmo IGMN: linhas de atraso (Time-Delay IGMN), uma camada de reservoir (Echo-State IGMN), média móvel exponencial do vetor de entrada reconstruído (Merge IGMN) e auto-referência (Recursive IGMN). Isso resulta em algoritmos que são online, incrementais, agressivos e têm capacidades temporais e, portanto, são adequados para tarefas com memória ou estados internos desconhecidos, caracterizados por fluxo contínuo ininterrupto de dados, e que exigem operação perpétua provendo previsões sem etapas separadas para aprendizado e execução. Os algoritmos propostos são comparados a outras redes neurais espaço-temporais em 8 tarefas de previsão de séries temporais. Dois deles mostram desempenhos satisfatórios, em geral, superando as abordagens existentes. Uma melhoria geral para o algoritmo IGMN também é descrita, eliminando um dos parâmetros ajustáveis manualmente e provendo melhores resultados. |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011 |
dc.date.accessioned.fl_str_mv |
2012-05-22T01:35:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/49063 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000828247 |
url |
http://hdl.handle.net/10183/49063 |
identifier_str_mv |
000828247 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/49063/1/000828247.pdf http://www.lume.ufrgs.br/bitstream/10183/49063/2/000828247.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/49063/3/000828247.pdf.jpg |
bitstream.checksum.fl_str_mv |
9318c677841a2f279c978a248f6f38b9 30552434887ca6def6887eec52800899 bd9faae329c70e18daaa06f44d4081c1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1810085226690379776 |