A deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisions

Detalhes bibliográficos
Autor(a) principal: Montelongo Flores, Alfredo
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/224856
Resumo: Estimar o resultado de um processo em litígio é crucial para muitas organizações. Uma aplicação específica são os "Passivos Contingenciais", que se referem a passivos que podem ou não ocorrer dependendo do resultado de um processo judicial em litígio. A metodologia tradicional para estimar essa probabilidade baseia-se na opinião de um advogado quem determina a possibilidade de um processo judicial ser perdido a partir de uma avaliação quantitativa. Esta tese apresenta a um modelo matemático baseado numa arquitetura de Deep Learning cujo objetivo é estimar a probabilidade de ganho ou perda de um processo de litígio, principalmente para ser utilizada na estimação de Passivos Contingenciais. A arquitetura, diferentemente do método tradicional, oferece um maior grau de confiança ao prever o resultado de um processo legal em termos de probabilidade e com um tempo de processamento de segundos. Além do resultado primário, a arquitetura estima uma amostra dos casos mais semelhantes ao processo estimado, que servem de apoio para a realização de estratégias de litígio. Nossa arquitetura foi testada em duas bases de dados de processos legais: (1) o Tribunal Europeu de Direitos Humanos (ECHR) e (2) o 4º Tribunal Regional do Trabalho brasileiro (4TRT). Ela estimou de acordo com nosso conhecimento, o melhor desempenho já publicado (precisão = 0,906) na base de dados da ECHR, uma coleção amplamente utilizada de processos legais, e é o primeiro trabalho a aplicar essa metodologia em um tribunal de trabalho brasileiro. Os resultados mostram que a arquitetura é uma alternativa adequada a ser utilizada contra o método tradicional de estimação do desfecho de um processo em litígio realizado por advogados. Finalmente, validamos nossos resultados com especialistas que confirmaram as possibilidades promissoras da arquitetura. Assim, nos incentivamos os académicos a continuar desenvolvendo pesquisas sobre modelagem matemática na área jurídica, pois é um tema emergente com um futuro promissor e aos usuários a utilizar ferramentas baseadas como a desenvolvida em nosso trabalho, pois fornecem vantagens substanciais em termos de precisão e velocidade sobre os métodos convencionais.
id URGS_7c3c8722426f3b97f088b0f282602493
oai_identifier_str oai:www.lume.ufrgs.br:10183/224856
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Montelongo Flores, AlfredoBecker, Joao Luiz2021-07-31T04:41:00Z2021http://hdl.handle.net/10183/224856001129356Estimar o resultado de um processo em litígio é crucial para muitas organizações. Uma aplicação específica são os "Passivos Contingenciais", que se referem a passivos que podem ou não ocorrer dependendo do resultado de um processo judicial em litígio. A metodologia tradicional para estimar essa probabilidade baseia-se na opinião de um advogado quem determina a possibilidade de um processo judicial ser perdido a partir de uma avaliação quantitativa. Esta tese apresenta a um modelo matemático baseado numa arquitetura de Deep Learning cujo objetivo é estimar a probabilidade de ganho ou perda de um processo de litígio, principalmente para ser utilizada na estimação de Passivos Contingenciais. A arquitetura, diferentemente do método tradicional, oferece um maior grau de confiança ao prever o resultado de um processo legal em termos de probabilidade e com um tempo de processamento de segundos. Além do resultado primário, a arquitetura estima uma amostra dos casos mais semelhantes ao processo estimado, que servem de apoio para a realização de estratégias de litígio. Nossa arquitetura foi testada em duas bases de dados de processos legais: (1) o Tribunal Europeu de Direitos Humanos (ECHR) e (2) o 4º Tribunal Regional do Trabalho brasileiro (4TRT). Ela estimou de acordo com nosso conhecimento, o melhor desempenho já publicado (precisão = 0,906) na base de dados da ECHR, uma coleção amplamente utilizada de processos legais, e é o primeiro trabalho a aplicar essa metodologia em um tribunal de trabalho brasileiro. Os resultados mostram que a arquitetura é uma alternativa adequada a ser utilizada contra o método tradicional de estimação do desfecho de um processo em litígio realizado por advogados. Finalmente, validamos nossos resultados com especialistas que confirmaram as possibilidades promissoras da arquitetura. Assim, nos incentivamos os académicos a continuar desenvolvendo pesquisas sobre modelagem matemática na área jurídica, pois é um tema emergente com um futuro promissor e aos usuários a utilizar ferramentas baseadas como a desenvolvida em nosso trabalho, pois fornecem vantagens substanciais em termos de precisão e velocidade sobre os métodos convencionais.Estimating the likely outcome of a litigation process is crucial for many organizations. A specific application is the “Contingents Liabilities,” which refers to liabilities that may or may not occur depending on the result of a pending litigation process (lawsuit). The traditional methodology for estimating this likelihood is based on the opinion from the lawyer’s experience which is based on a qualitative appreciation. This dissertation presents a mathematical modeling framework based on a Deep Learning architecture that estimates the probability outcome of a litigation process (accepted & not accepted) with a particular use on Contingent Liabilities. The framework offers a degree of confidence by describing how likely an event will occur in terms of probability and provides results in seconds. Besides the primary outcome, it offers a sample of the most similar cases to the estimated lawsuit that serve as support to perform litigation strategies. We tested our framework in two litigation process databases from: (1) the European Court of Human Rights (ECHR) and (2) the Brazilian 4th regional labor court. Our framework achieved to our knowledge the best-published performance (precision = 0.906) on the ECHR database, a widely used collection of litigation processes, and it is the first to be applied in a Brazilian labor court. Results show that the framework is a suitable alternative to be used against the traditional method of estimating the verdict outcome from a pending litigation performed by lawyers. Finally, we validated our results with experts who confirmed the promising possibilities of the framework. We encourage academics to continue developing research on mathematical modeling in the legal area as it is an emerging topic with a promising future and practitioners to use tools based as the proposed, as they provides substantial advantages in terms of accuracy and speed over conventional methods.application/pdfengMétodos estatísticosProcesso judiciárioProbabilidadeDeep learningNLPLegal analyticsA deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulEscola de AdministraçãoPrograma de Pós-Graduação em AdministraçãoPorto Alegre, BR-RS2021doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001129356.pdf.txt001129356.pdf.txtExtracted Texttext/plain222312http://www.lume.ufrgs.br/bitstream/10183/224856/2/001129356.pdf.txt39fc2cbc0e8ed6be519509c091b453b4MD52ORIGINAL001129356.pdfTexto completo (inglês)application/pdf8595696http://www.lume.ufrgs.br/bitstream/10183/224856/1/001129356.pdfd9a6ffd6936844f35364a06d70222eb2MD5110183/2248562021-08-18 04:35:41.429189oai:www.lume.ufrgs.br:10183/224856Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-08-18T07:35:41Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv A deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisions
title A deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisions
spellingShingle A deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisions
Montelongo Flores, Alfredo
Métodos estatísticos
Processo judiciário
Probabilidade
Deep learning
NLP
Legal analytics
title_short A deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisions
title_full A deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisions
title_fullStr A deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisions
title_full_unstemmed A deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisions
title_sort A deep learning framework for contingent liabilities risk management : predicting Brazilian labor court decisions
author Montelongo Flores, Alfredo
author_facet Montelongo Flores, Alfredo
author_role author
dc.contributor.author.fl_str_mv Montelongo Flores, Alfredo
dc.contributor.advisor1.fl_str_mv Becker, Joao Luiz
contributor_str_mv Becker, Joao Luiz
dc.subject.por.fl_str_mv Métodos estatísticos
Processo judiciário
Probabilidade
topic Métodos estatísticos
Processo judiciário
Probabilidade
Deep learning
NLP
Legal analytics
dc.subject.eng.fl_str_mv Deep learning
NLP
Legal analytics
description Estimar o resultado de um processo em litígio é crucial para muitas organizações. Uma aplicação específica são os "Passivos Contingenciais", que se referem a passivos que podem ou não ocorrer dependendo do resultado de um processo judicial em litígio. A metodologia tradicional para estimar essa probabilidade baseia-se na opinião de um advogado quem determina a possibilidade de um processo judicial ser perdido a partir de uma avaliação quantitativa. Esta tese apresenta a um modelo matemático baseado numa arquitetura de Deep Learning cujo objetivo é estimar a probabilidade de ganho ou perda de um processo de litígio, principalmente para ser utilizada na estimação de Passivos Contingenciais. A arquitetura, diferentemente do método tradicional, oferece um maior grau de confiança ao prever o resultado de um processo legal em termos de probabilidade e com um tempo de processamento de segundos. Além do resultado primário, a arquitetura estima uma amostra dos casos mais semelhantes ao processo estimado, que servem de apoio para a realização de estratégias de litígio. Nossa arquitetura foi testada em duas bases de dados de processos legais: (1) o Tribunal Europeu de Direitos Humanos (ECHR) e (2) o 4º Tribunal Regional do Trabalho brasileiro (4TRT). Ela estimou de acordo com nosso conhecimento, o melhor desempenho já publicado (precisão = 0,906) na base de dados da ECHR, uma coleção amplamente utilizada de processos legais, e é o primeiro trabalho a aplicar essa metodologia em um tribunal de trabalho brasileiro. Os resultados mostram que a arquitetura é uma alternativa adequada a ser utilizada contra o método tradicional de estimação do desfecho de um processo em litígio realizado por advogados. Finalmente, validamos nossos resultados com especialistas que confirmaram as possibilidades promissoras da arquitetura. Assim, nos incentivamos os académicos a continuar desenvolvendo pesquisas sobre modelagem matemática na área jurídica, pois é um tema emergente com um futuro promissor e aos usuários a utilizar ferramentas baseadas como a desenvolvida em nosso trabalho, pois fornecem vantagens substanciais em termos de precisão e velocidade sobre os métodos convencionais.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-07-31T04:41:00Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/224856
dc.identifier.nrb.pt_BR.fl_str_mv 001129356
url http://hdl.handle.net/10183/224856
identifier_str_mv 001129356
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/224856/2/001129356.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/224856/1/001129356.pdf
bitstream.checksum.fl_str_mv 39fc2cbc0e8ed6be519509c091b453b4
d9a6ffd6936844f35364a06d70222eb2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1816736742930120704