Markov-switching models : empirical applications using classical and Bayesian inference
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/202145 |
Resumo: | In this thesis, we present three empirical applications on finance and macroeconomics. The general modeling framework in all chapters is based on extensions of the Markov-switching model. And the statistical methodology is divided into two distinct areas; Classical and Bayesian inference.1 In the first one, we test for the presence of duration dependence in the Brazilian business cycle. The main results indicated that as the recession ages, the probability of a transition into an expansion increases (positive duration dependence in recessions). On the other hand, as the expansions ages, the probability of a transition into a recession decreases (negative duration dependence in expansions). In the second paper, we extend the research concerned with the evaluation of alternative volatility modeling and forecasting methods for Bitcoin log-returns. The in-sample estimates suggest evidence of long memory in the data series. When performing one-day ahead Value-at-Risk (VaR), our results outperform all standard single-regime GARCH models considered in the study. Finally, in the third paper, we capture different regimes in Bitcoin volatility returns and test the mean-reversion hypothesis for multi-period returns. In general, we found evidence of mean-aversion for different holding returns. We also confirmed this result for alternative specifications and also carrying the analysis for sub-sample periods. |
id |
URGS_8093aa9fbc0bfa978848c16071b19e3d |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/202145 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Mendes, Fernando Henrique de Paula e SilvaCaldeira, João Frois2019-11-28T03:58:58Z2019http://hdl.handle.net/10183/202145001107097In this thesis, we present three empirical applications on finance and macroeconomics. The general modeling framework in all chapters is based on extensions of the Markov-switching model. And the statistical methodology is divided into two distinct areas; Classical and Bayesian inference.1 In the first one, we test for the presence of duration dependence in the Brazilian business cycle. The main results indicated that as the recession ages, the probability of a transition into an expansion increases (positive duration dependence in recessions). On the other hand, as the expansions ages, the probability of a transition into a recession decreases (negative duration dependence in expansions). In the second paper, we extend the research concerned with the evaluation of alternative volatility modeling and forecasting methods for Bitcoin log-returns. The in-sample estimates suggest evidence of long memory in the data series. When performing one-day ahead Value-at-Risk (VaR), our results outperform all standard single-regime GARCH models considered in the study. Finally, in the third paper, we capture different regimes in Bitcoin volatility returns and test the mean-reversion hypothesis for multi-period returns. In general, we found evidence of mean-aversion for different holding returns. We also confirmed this result for alternative specifications and also carrying the analysis for sub-sample periods.application/pdfengMacroeconomiaNegóciosBrasilMarkov-switchingDuration dependenceBusiness cycleVolatilityMeanreversionMarkov-switching models : empirical applications using classical and Bayesian inferenceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulFaculdade de Ciências EconômicasPrograma de Pós-Graduação em EconomiaPorto Alegre, BR-RS2019doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001107097.pdf.txt001107097.pdf.txtExtracted Texttext/plain100125http://www.lume.ufrgs.br/bitstream/10183/202145/2/001107097.pdf.txt4fc4235e0f729b191eaeb88c975b2cdfMD52ORIGINAL001107097.pdfTexto completo (inglês)application/pdf1346912http://www.lume.ufrgs.br/bitstream/10183/202145/1/001107097.pdff594c203f74ad7660269d6d1dec41a4fMD5110183/2021452021-05-26 04:45:06.601038oai:www.lume.ufrgs.br:10183/202145Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:45:06Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Markov-switching models : empirical applications using classical and Bayesian inference |
title |
Markov-switching models : empirical applications using classical and Bayesian inference |
spellingShingle |
Markov-switching models : empirical applications using classical and Bayesian inference Mendes, Fernando Henrique de Paula e Silva Macroeconomia Negócios Brasil Markov-switching Duration dependence Business cycle Volatility Meanreversion |
title_short |
Markov-switching models : empirical applications using classical and Bayesian inference |
title_full |
Markov-switching models : empirical applications using classical and Bayesian inference |
title_fullStr |
Markov-switching models : empirical applications using classical and Bayesian inference |
title_full_unstemmed |
Markov-switching models : empirical applications using classical and Bayesian inference |
title_sort |
Markov-switching models : empirical applications using classical and Bayesian inference |
author |
Mendes, Fernando Henrique de Paula e Silva |
author_facet |
Mendes, Fernando Henrique de Paula e Silva |
author_role |
author |
dc.contributor.author.fl_str_mv |
Mendes, Fernando Henrique de Paula e Silva |
dc.contributor.advisor1.fl_str_mv |
Caldeira, João Frois |
contributor_str_mv |
Caldeira, João Frois |
dc.subject.por.fl_str_mv |
Macroeconomia Negócios Brasil |
topic |
Macroeconomia Negócios Brasil Markov-switching Duration dependence Business cycle Volatility Meanreversion |
dc.subject.eng.fl_str_mv |
Markov-switching Duration dependence Business cycle Volatility Meanreversion |
description |
In this thesis, we present three empirical applications on finance and macroeconomics. The general modeling framework in all chapters is based on extensions of the Markov-switching model. And the statistical methodology is divided into two distinct areas; Classical and Bayesian inference.1 In the first one, we test for the presence of duration dependence in the Brazilian business cycle. The main results indicated that as the recession ages, the probability of a transition into an expansion increases (positive duration dependence in recessions). On the other hand, as the expansions ages, the probability of a transition into a recession decreases (negative duration dependence in expansions). In the second paper, we extend the research concerned with the evaluation of alternative volatility modeling and forecasting methods for Bitcoin log-returns. The in-sample estimates suggest evidence of long memory in the data series. When performing one-day ahead Value-at-Risk (VaR), our results outperform all standard single-regime GARCH models considered in the study. Finally, in the third paper, we capture different regimes in Bitcoin volatility returns and test the mean-reversion hypothesis for multi-period returns. In general, we found evidence of mean-aversion for different holding returns. We also confirmed this result for alternative specifications and also carrying the analysis for sub-sample periods. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-11-28T03:58:58Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/202145 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001107097 |
url |
http://hdl.handle.net/10183/202145 |
identifier_str_mv |
001107097 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/202145/2/001107097.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/202145/1/001107097.pdf |
bitstream.checksum.fl_str_mv |
4fc4235e0f729b191eaeb88c975b2cdf f594c203f74ad7660269d6d1dec41a4f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1810085505881079808 |