Markov-switching models : empirical applications using classical and Bayesian inference

Detalhes bibliográficos
Autor(a) principal: Mendes, Fernando Henrique de Paula e Silva
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/202145
Resumo: In this thesis, we present three empirical applications on finance and macroeconomics. The general modeling framework in all chapters is based on extensions of the Markov-switching model. And the statistical methodology is divided into two distinct areas; Classical and Bayesian inference.1 In the first one, we test for the presence of duration dependence in the Brazilian business cycle. The main results indicated that as the recession ages, the probability of a transition into an expansion increases (positive duration dependence in recessions). On the other hand, as the expansions ages, the probability of a transition into a recession decreases (negative duration dependence in expansions). In the second paper, we extend the research concerned with the evaluation of alternative volatility modeling and forecasting methods for Bitcoin log-returns. The in-sample estimates suggest evidence of long memory in the data series. When performing one-day ahead Value-at-Risk (VaR), our results outperform all standard single-regime GARCH models considered in the study. Finally, in the third paper, we capture different regimes in Bitcoin volatility returns and test the mean-reversion hypothesis for multi-period returns. In general, we found evidence of mean-aversion for different holding returns. We also confirmed this result for alternative specifications and also carrying the analysis for sub-sample periods.
id URGS_8093aa9fbc0bfa978848c16071b19e3d
oai_identifier_str oai:www.lume.ufrgs.br:10183/202145
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Mendes, Fernando Henrique de Paula e SilvaCaldeira, João Frois2019-11-28T03:58:58Z2019http://hdl.handle.net/10183/202145001107097In this thesis, we present three empirical applications on finance and macroeconomics. The general modeling framework in all chapters is based on extensions of the Markov-switching model. And the statistical methodology is divided into two distinct areas; Classical and Bayesian inference.1 In the first one, we test for the presence of duration dependence in the Brazilian business cycle. The main results indicated that as the recession ages, the probability of a transition into an expansion increases (positive duration dependence in recessions). On the other hand, as the expansions ages, the probability of a transition into a recession decreases (negative duration dependence in expansions). In the second paper, we extend the research concerned with the evaluation of alternative volatility modeling and forecasting methods for Bitcoin log-returns. The in-sample estimates suggest evidence of long memory in the data series. When performing one-day ahead Value-at-Risk (VaR), our results outperform all standard single-regime GARCH models considered in the study. Finally, in the third paper, we capture different regimes in Bitcoin volatility returns and test the mean-reversion hypothesis for multi-period returns. In general, we found evidence of mean-aversion for different holding returns. We also confirmed this result for alternative specifications and also carrying the analysis for sub-sample periods.application/pdfengMacroeconomiaNegóciosBrasilMarkov-switchingDuration dependenceBusiness cycleVolatilityMeanreversionMarkov-switching models : empirical applications using classical and Bayesian inferenceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulFaculdade de Ciências EconômicasPrograma de Pós-Graduação em EconomiaPorto Alegre, BR-RS2019doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001107097.pdf.txt001107097.pdf.txtExtracted Texttext/plain100125http://www.lume.ufrgs.br/bitstream/10183/202145/2/001107097.pdf.txt4fc4235e0f729b191eaeb88c975b2cdfMD52ORIGINAL001107097.pdfTexto completo (inglês)application/pdf1346912http://www.lume.ufrgs.br/bitstream/10183/202145/1/001107097.pdff594c203f74ad7660269d6d1dec41a4fMD5110183/2021452021-05-26 04:45:06.601038oai:www.lume.ufrgs.br:10183/202145Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:45:06Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Markov-switching models : empirical applications using classical and Bayesian inference
title Markov-switching models : empirical applications using classical and Bayesian inference
spellingShingle Markov-switching models : empirical applications using classical and Bayesian inference
Mendes, Fernando Henrique de Paula e Silva
Macroeconomia
Negócios
Brasil
Markov-switching
Duration dependence
Business cycle
Volatility
Meanreversion
title_short Markov-switching models : empirical applications using classical and Bayesian inference
title_full Markov-switching models : empirical applications using classical and Bayesian inference
title_fullStr Markov-switching models : empirical applications using classical and Bayesian inference
title_full_unstemmed Markov-switching models : empirical applications using classical and Bayesian inference
title_sort Markov-switching models : empirical applications using classical and Bayesian inference
author Mendes, Fernando Henrique de Paula e Silva
author_facet Mendes, Fernando Henrique de Paula e Silva
author_role author
dc.contributor.author.fl_str_mv Mendes, Fernando Henrique de Paula e Silva
dc.contributor.advisor1.fl_str_mv Caldeira, João Frois
contributor_str_mv Caldeira, João Frois
dc.subject.por.fl_str_mv Macroeconomia
Negócios
Brasil
topic Macroeconomia
Negócios
Brasil
Markov-switching
Duration dependence
Business cycle
Volatility
Meanreversion
dc.subject.eng.fl_str_mv Markov-switching
Duration dependence
Business cycle
Volatility
Meanreversion
description In this thesis, we present three empirical applications on finance and macroeconomics. The general modeling framework in all chapters is based on extensions of the Markov-switching model. And the statistical methodology is divided into two distinct areas; Classical and Bayesian inference.1 In the first one, we test for the presence of duration dependence in the Brazilian business cycle. The main results indicated that as the recession ages, the probability of a transition into an expansion increases (positive duration dependence in recessions). On the other hand, as the expansions ages, the probability of a transition into a recession decreases (negative duration dependence in expansions). In the second paper, we extend the research concerned with the evaluation of alternative volatility modeling and forecasting methods for Bitcoin log-returns. The in-sample estimates suggest evidence of long memory in the data series. When performing one-day ahead Value-at-Risk (VaR), our results outperform all standard single-regime GARCH models considered in the study. Finally, in the third paper, we capture different regimes in Bitcoin volatility returns and test the mean-reversion hypothesis for multi-period returns. In general, we found evidence of mean-aversion for different holding returns. We also confirmed this result for alternative specifications and also carrying the analysis for sub-sample periods.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-11-28T03:58:58Z
dc.date.issued.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/202145
dc.identifier.nrb.pt_BR.fl_str_mv 001107097
url http://hdl.handle.net/10183/202145
identifier_str_mv 001107097
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/202145/2/001107097.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/202145/1/001107097.pdf
bitstream.checksum.fl_str_mv 4fc4235e0f729b191eaeb88c975b2cdf
f594c203f74ad7660269d6d1dec41a4f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085505881079808