Longa dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de wavelets

Detalhes bibliográficos
Autor(a) principal: Linhares, Raquel Romes
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/86626
Resumo: O método da análise de flutuações destendenciadas (Detrended Fluctuation Analysis - DFA), proposto por Peng et al. (1994), é um exemplo de metodologia recente, sendo utilizada em um crescente número de aplicações, para identificar longa dependência em séries temporais. Como não existe uma regra específica para a escolha dos números de regressores no método de DFA, apresentamos aqui uma escolha ótima assintótica. Para um ruído Gaussiano fracionário, provamos que o estimador bHDFA tem distribuição Gaussiana exata e assintótica. O parâmetro mais importante para ser estimado em dados com caudas pesadas é a sua taxa de decaimento α que determina a probabilidade de ocorrência dos valores extremos da distribuição subjacente. Propomos, neste trabalho, um novo estimador para o parâmetro α, baseado na função característica empírica e no procedimento de encolhimento de wavelets. Estamos interessados em analisar a longa dependência em sequência de DNA utilizando a metodologia de mudança de regimes, proposta por Liu (2000). Nesta metodologia, se a duração dos regimes de uma série temporal tem uma distribuição de caudas pesadas com parâmetro α ∈ (1, 2), então a série temporal apresenta a característica de longa dependência. Além disso, aplicando-se qualquer transformação linear que preserva a propriedade de variância finita na série temporal, igualmente preservará a propriedade de longa dependência. Por fim, estudamos as distribuições de distâncias das regiões codantes e não codantes em sequências de DNA. Concluímos que todas as técnicas apresentadas neste trabalho, para analisar longa dependência em série temporais, envolvendo conceitos de análise de flutuações destendenciadas, distribuições com caudas pesadas e encolhimento de wavelets, mostram a existência de longa dependência em todas sequências de DNA aqui estudadas.
id URGS_820a954638260a91fa84e1bd1aa8b962
oai_identifier_str oai:www.lume.ufrgs.br:10183/86626
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Linhares, Raquel RomesLopes, Silvia Regina Costa2014-01-23T01:53:07Z2011http://hdl.handle.net/10183/86626000823194O método da análise de flutuações destendenciadas (Detrended Fluctuation Analysis - DFA), proposto por Peng et al. (1994), é um exemplo de metodologia recente, sendo utilizada em um crescente número de aplicações, para identificar longa dependência em séries temporais. Como não existe uma regra específica para a escolha dos números de regressores no método de DFA, apresentamos aqui uma escolha ótima assintótica. Para um ruído Gaussiano fracionário, provamos que o estimador bHDFA tem distribuição Gaussiana exata e assintótica. O parâmetro mais importante para ser estimado em dados com caudas pesadas é a sua taxa de decaimento α que determina a probabilidade de ocorrência dos valores extremos da distribuição subjacente. Propomos, neste trabalho, um novo estimador para o parâmetro α, baseado na função característica empírica e no procedimento de encolhimento de wavelets. Estamos interessados em analisar a longa dependência em sequência de DNA utilizando a metodologia de mudança de regimes, proposta por Liu (2000). Nesta metodologia, se a duração dos regimes de uma série temporal tem uma distribuição de caudas pesadas com parâmetro α ∈ (1, 2), então a série temporal apresenta a característica de longa dependência. Além disso, aplicando-se qualquer transformação linear que preserva a propriedade de variância finita na série temporal, igualmente preservará a propriedade de longa dependência. Por fim, estudamos as distribuições de distâncias das regiões codantes e não codantes em sequências de DNA. Concluímos que todas as técnicas apresentadas neste trabalho, para analisar longa dependência em série temporais, envolvendo conceitos de análise de flutuações destendenciadas, distribuições com caudas pesadas e encolhimento de wavelets, mostram a existência de longa dependência em todas sequências de DNA aqui estudadas.The method of detrended fluctuation analysis (DFA), proposed by Peng et al. (1994), is useful in revealing the extent of long-range dependence in time series. Since there is not a specific rule for the choice of the numbers of regressors in DFA method, we present here an asymptotic optimal choice. For a fractional Gaussian noise, we prove the exact and the asymptotic Gaussian distributions for the bHDFA estimator. The most important parameter to estimate in a heavy-tailed data is the tail rate of decay α which determines the probability of occurrence of extreme values of the underlying distribution. Here we propose a novel estimator for α based on the empirical characteristic function and on the principal of wavelet shrinkage. Here we are interested in analyzing the long-range dependence in several DNA sequences, under the heavy-tail regime switching mechanism, proposed by Liu (2000). In this mechanism, if the duration of the regimes of a given time series has a heavy tail distribution with index parameter α ∈ (1, 2), then there is long-range dependence in this time series, and any functional transformation of the original time series preserving the property of finite variance, also preserves the property of long-range dependence. We also study the length distribution of coding and noncoding regions in DNA sequences. We conclude that all techniques presented in this paper to analyze longrange dependence in time series, involving concepts of detrended fluctuation analysis, heavy tail distributions and wavelet shrinkage, show the existence of long-range dependence in all DNA sequences studied here.application/pdfporDistribuição de probabilidadeSequencia dna mitocondrialFlutuaçõesWavelets : Construcao : DecomposicaoProbalidadeLonga dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de waveletsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de MatemáticaPrograma de Pós-Graduação em MatemáticaPorto Alegre, BR-RS2011doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000823194.pdf000823194.pdfTexto completoapplication/pdf1366145http://www.lume.ufrgs.br/bitstream/10183/86626/1/000823194.pdf00534c4cfaae43cf6cec17a5a1c4fbd3MD51TEXT000823194.pdf.txt000823194.pdf.txtExtracted Texttext/plain246240http://www.lume.ufrgs.br/bitstream/10183/86626/2/000823194.pdf.txtc848b65aa7c37d7dc8fcb6d23b7e47e2MD52THUMBNAIL000823194.pdf.jpg000823194.pdf.jpgGenerated Thumbnailimage/jpeg1112http://www.lume.ufrgs.br/bitstream/10183/86626/3/000823194.pdf.jpgead92bae96c77dada07d94522d2494c1MD5310183/866262022-09-16 04:59:37.393091oai:www.lume.ufrgs.br:10183/86626Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-09-16T07:59:37Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Longa dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de wavelets
title Longa dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de wavelets
spellingShingle Longa dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de wavelets
Linhares, Raquel Romes
Distribuição de probabilidade
Sequencia dna mitocondrial
Flutuações
Wavelets : Construcao : Decomposicao
Probalidade
title_short Longa dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de wavelets
title_full Longa dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de wavelets
title_fullStr Longa dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de wavelets
title_full_unstemmed Longa dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de wavelets
title_sort Longa dependência em sequências de DNA : análise de flutuações destendenciadas, teorias das distribuições estáveis e de wavelets
author Linhares, Raquel Romes
author_facet Linhares, Raquel Romes
author_role author
dc.contributor.author.fl_str_mv Linhares, Raquel Romes
dc.contributor.advisor1.fl_str_mv Lopes, Silvia Regina Costa
contributor_str_mv Lopes, Silvia Regina Costa
dc.subject.por.fl_str_mv Distribuição de probabilidade
Sequencia dna mitocondrial
Flutuações
Wavelets : Construcao : Decomposicao
Probalidade
topic Distribuição de probabilidade
Sequencia dna mitocondrial
Flutuações
Wavelets : Construcao : Decomposicao
Probalidade
description O método da análise de flutuações destendenciadas (Detrended Fluctuation Analysis - DFA), proposto por Peng et al. (1994), é um exemplo de metodologia recente, sendo utilizada em um crescente número de aplicações, para identificar longa dependência em séries temporais. Como não existe uma regra específica para a escolha dos números de regressores no método de DFA, apresentamos aqui uma escolha ótima assintótica. Para um ruído Gaussiano fracionário, provamos que o estimador bHDFA tem distribuição Gaussiana exata e assintótica. O parâmetro mais importante para ser estimado em dados com caudas pesadas é a sua taxa de decaimento α que determina a probabilidade de ocorrência dos valores extremos da distribuição subjacente. Propomos, neste trabalho, um novo estimador para o parâmetro α, baseado na função característica empírica e no procedimento de encolhimento de wavelets. Estamos interessados em analisar a longa dependência em sequência de DNA utilizando a metodologia de mudança de regimes, proposta por Liu (2000). Nesta metodologia, se a duração dos regimes de uma série temporal tem uma distribuição de caudas pesadas com parâmetro α ∈ (1, 2), então a série temporal apresenta a característica de longa dependência. Além disso, aplicando-se qualquer transformação linear que preserva a propriedade de variância finita na série temporal, igualmente preservará a propriedade de longa dependência. Por fim, estudamos as distribuições de distâncias das regiões codantes e não codantes em sequências de DNA. Concluímos que todas as técnicas apresentadas neste trabalho, para analisar longa dependência em série temporais, envolvendo conceitos de análise de flutuações destendenciadas, distribuições com caudas pesadas e encolhimento de wavelets, mostram a existência de longa dependência em todas sequências de DNA aqui estudadas.
publishDate 2011
dc.date.issued.fl_str_mv 2011
dc.date.accessioned.fl_str_mv 2014-01-23T01:53:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/86626
dc.identifier.nrb.pt_BR.fl_str_mv 000823194
url http://hdl.handle.net/10183/86626
identifier_str_mv 000823194
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/86626/1/000823194.pdf
http://www.lume.ufrgs.br/bitstream/10183/86626/2/000823194.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/86626/3/000823194.pdf.jpg
bitstream.checksum.fl_str_mv 00534c4cfaae43cf6cec17a5a1c4fbd3
c848b65aa7c37d7dc8fcb6d23b7e47e2
ead92bae96c77dada07d94522d2494c1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085278047535104