Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotos

Detalhes bibliográficos
Autor(a) principal: Cassol, Henrique Luis Godinho
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/79773
Resumo: A imprecisão das estimativas de carbono estocado em florestas naturais no ciclo global de carbono vem criando uma demanda de desenvolvimento e padronização de métodos indiretos para modelagem deste ciclo e de emissões de CO2 provenientes de mudanças de uso da terra e florestas. O trabalho teve como objetivo estabelecer as relações empíricas existentes entre a biomassa e o estoque de carbono de uma Floresta Ombrófila Mista (FOM) e os dados ópticos provenientes de sensores remotos de média resolução espacial (ASTER, LiSSIII e TM) por meio de análise de regressão. Além disso, criou-se um cenário hipotético de Redução de Emissões por Desmatamento, Degradação Florestal e Aumento de Estoque de Carbono (REDD+). O estudo foi desenvolvido na Estação Experimental de São João do Triunfo, no estado do Paraná. As equações de regressão envolveram como variáveis dependentes (y): a biomassa e o carbono florestal, obtidos indiretamente do inventário florestal contínuo do Programa de Pesquisas Ecológicas de Longa Duração (PELD), e como variáveis independentes (x) as bandas espectrais e os índices de vegetação (IV). O tratamento estatístico envolveu a análise da matriz de correlação (r) entre as variáveis x e y; a análise de regressão linear simples, não linear e múltipla, com as seguintes estatísticas: R², R²aj., Syx, Syx% e dispersão dos resíduos, Por fim, elaboraram-se mapas temáticos para estas variáveis biofísicas. Como as correlações (r) entre as variáveis biofísicas e espectrais do sensor ASTER (15m) foram baixas, a imagem foi degradada para 30m e 45m. Na resolução de 30m, o uso dos dados ASTER foi superior ao seu uso na resolução original. Não houve diferenças significativas nos valores de r entre o uso das bandas ou dos IVs para predizer as variáveis biofísicas. Regressões lineares simples se mostraram mais adequadas do que as regressões não lineares (exponenciais e logarítmicas) e múltiplas para estimar as variáveis biofísicas, apresentando erros inferiores aos estabelecidos nas campanhas de inventários tradicionais (α < 5%). Os mapas gerados a partir do sensor ASTER 30m foram mais fidedignos ao retratar a distribuição espacial destas variáveis na área de estudo devido à alta correspondência destes com os valores observados no inventário (PELD). Assim, a equação de regressão de carbono florestal a partir do ASTER foi usada na criação do projeto REDD+. A estimativa de biomassa e de carbono florestal da FOM mediante uso de dados de sensores ópticos foi adequada, com possibilidades de ser expandida para extensas áreas. A metodologia, portanto, se mostrou apropriada para ao monitoramento, relatório e verificação de estoques de carbono em florestas.
id URGS_8494a9f074dbebe808151a15603dec27
oai_identifier_str oai:www.lume.ufrgs.br:10183/79773
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Cassol, Henrique Luis GodinhoSaldanha, Dejanira LuderitzKuplich, Tatiana Mora2013-10-31T01:54:59Z2013http://hdl.handle.net/10183/79773000902395A imprecisão das estimativas de carbono estocado em florestas naturais no ciclo global de carbono vem criando uma demanda de desenvolvimento e padronização de métodos indiretos para modelagem deste ciclo e de emissões de CO2 provenientes de mudanças de uso da terra e florestas. O trabalho teve como objetivo estabelecer as relações empíricas existentes entre a biomassa e o estoque de carbono de uma Floresta Ombrófila Mista (FOM) e os dados ópticos provenientes de sensores remotos de média resolução espacial (ASTER, LiSSIII e TM) por meio de análise de regressão. Além disso, criou-se um cenário hipotético de Redução de Emissões por Desmatamento, Degradação Florestal e Aumento de Estoque de Carbono (REDD+). O estudo foi desenvolvido na Estação Experimental de São João do Triunfo, no estado do Paraná. As equações de regressão envolveram como variáveis dependentes (y): a biomassa e o carbono florestal, obtidos indiretamente do inventário florestal contínuo do Programa de Pesquisas Ecológicas de Longa Duração (PELD), e como variáveis independentes (x) as bandas espectrais e os índices de vegetação (IV). O tratamento estatístico envolveu a análise da matriz de correlação (r) entre as variáveis x e y; a análise de regressão linear simples, não linear e múltipla, com as seguintes estatísticas: R², R²aj., Syx, Syx% e dispersão dos resíduos, Por fim, elaboraram-se mapas temáticos para estas variáveis biofísicas. Como as correlações (r) entre as variáveis biofísicas e espectrais do sensor ASTER (15m) foram baixas, a imagem foi degradada para 30m e 45m. Na resolução de 30m, o uso dos dados ASTER foi superior ao seu uso na resolução original. Não houve diferenças significativas nos valores de r entre o uso das bandas ou dos IVs para predizer as variáveis biofísicas. Regressões lineares simples se mostraram mais adequadas do que as regressões não lineares (exponenciais e logarítmicas) e múltiplas para estimar as variáveis biofísicas, apresentando erros inferiores aos estabelecidos nas campanhas de inventários tradicionais (α < 5%). Os mapas gerados a partir do sensor ASTER 30m foram mais fidedignos ao retratar a distribuição espacial destas variáveis na área de estudo devido à alta correspondência destes com os valores observados no inventário (PELD). Assim, a equação de regressão de carbono florestal a partir do ASTER foi usada na criação do projeto REDD+. A estimativa de biomassa e de carbono florestal da FOM mediante uso de dados de sensores ópticos foi adequada, com possibilidades de ser expandida para extensas áreas. A metodologia, portanto, se mostrou apropriada para ao monitoramento, relatório e verificação de estoques de carbono em florestas.The imprecision of the estimates of carbon stock in natural forests in the global carbon cycle has created a demand for development and standardization of indirect methods for modeling this cycle and CO2 emissions from land use change and forestry. The work had as objective to establish empirical relationships between biomass and carbon stock of an Araucaria Forest (FOM) and medium spatial resolution remote sensing data (ASTER, and LiSSIII TM) through regression analysis. In addition, we created a hypothetical scenario of Reducing Emissions from Deforestation and Forest Degradation and Enhanced Carbon Stocks (REDD+). The study was developed at the Experimental Station of São João do Triunfo, state of Paraná. The regression analysis involved the forest biomass and forest carbon obtained from continuous forest inventory of the Long Term Ecological Research Program (LTER) as dependent variables (y) and spectral bands and vegetation indices (VIs) as independent variables (x). The statistical analysis comprised correlation analysis (r) between the variables x and y; regression analysis from linear, nonlinear and multiple regressions with the following statistics: R², R²adj, Syx, Syx% and residual dispersion. Furthermore thematic maps were made. Correlations between the biophysical variables and the spectral ASTER data were weak therefore ASTER was scaling up to 30m and 45m. The resolution of 30m, using ASTER data was higher than its use in the original resolution. There were not significant differences in r values between use of bands or VIs to predict the biophysical variables. Linear regressions were more suitable than nonlinear regressions (exponential and logarithmic) and multiple to estimate the biophysical variables, with errors lower than established in traditional inventories campaigns (α <5%). Maps generated from ASTER 30m were more reliable in portraying the spatial distribution of these variables in the study area due to the high correlation of these with the values observed in the inventory (LTER). Thus, the forest carbon equation from ASTER data was used in the creation of REDD+. The estimated biomass and forest carbon by using optical sensors data was adequate, with possibilities to be expanded to large areas. The methodology thus proved suitable for the monitoring, reporting and verification of carbon stocks in forests.application/pdfporSensoriamento remotoEquações alométricasCarbonoBiophysical variablesOrganic carbonOptical remote sensingAllometric equationsREDD+Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulCentro Estadual de Pesquisas em Sensoriamento Remoto e MeteorologiaPrograma de Pós-Graduação em Sensoriamento RemotoPorto Alegre, BR-RS2013mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000902395.pdf000902395.pdfTexto completoapplication/pdf5191918http://www.lume.ufrgs.br/bitstream/10183/79773/1/000902395.pdfaf8427e9028c39d0db6bd5cc8cc082adMD51TEXT000902395.pdf.txt000902395.pdf.txtExtracted Texttext/plain274679http://www.lume.ufrgs.br/bitstream/10183/79773/2/000902395.pdf.txtb0981cf7f2d32a6ac1fdaba3c1742ed5MD52THUMBNAIL000902395.pdf.jpg000902395.pdf.jpgGenerated Thumbnailimage/jpeg1026http://www.lume.ufrgs.br/bitstream/10183/79773/3/000902395.pdf.jpgacccaf7a999e9abbbe7ed3051a96119eMD5310183/797732018-10-17 09:00:36.365oai:www.lume.ufrgs.br:10183/79773Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-17T12:00:36Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotos
title Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotos
spellingShingle Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotos
Cassol, Henrique Luis Godinho
Sensoriamento remoto
Equações alométricas
Carbono
Biophysical variables
Organic carbon
Optical remote sensing
Allometric equations
REDD+
title_short Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotos
title_full Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotos
title_fullStr Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotos
title_full_unstemmed Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotos
title_sort Estimativa de biomassa e estoque de carbono em um fragmento de floresta ombrófila mista com uso de dados ópticos de sensores remotos
author Cassol, Henrique Luis Godinho
author_facet Cassol, Henrique Luis Godinho
author_role author
dc.contributor.author.fl_str_mv Cassol, Henrique Luis Godinho
dc.contributor.advisor1.fl_str_mv Saldanha, Dejanira Luderitz
dc.contributor.advisor-co1.fl_str_mv Kuplich, Tatiana Mora
contributor_str_mv Saldanha, Dejanira Luderitz
Kuplich, Tatiana Mora
dc.subject.por.fl_str_mv Sensoriamento remoto
Equações alométricas
Carbono
topic Sensoriamento remoto
Equações alométricas
Carbono
Biophysical variables
Organic carbon
Optical remote sensing
Allometric equations
REDD+
dc.subject.eng.fl_str_mv Biophysical variables
Organic carbon
Optical remote sensing
Allometric equations
REDD+
description A imprecisão das estimativas de carbono estocado em florestas naturais no ciclo global de carbono vem criando uma demanda de desenvolvimento e padronização de métodos indiretos para modelagem deste ciclo e de emissões de CO2 provenientes de mudanças de uso da terra e florestas. O trabalho teve como objetivo estabelecer as relações empíricas existentes entre a biomassa e o estoque de carbono de uma Floresta Ombrófila Mista (FOM) e os dados ópticos provenientes de sensores remotos de média resolução espacial (ASTER, LiSSIII e TM) por meio de análise de regressão. Além disso, criou-se um cenário hipotético de Redução de Emissões por Desmatamento, Degradação Florestal e Aumento de Estoque de Carbono (REDD+). O estudo foi desenvolvido na Estação Experimental de São João do Triunfo, no estado do Paraná. As equações de regressão envolveram como variáveis dependentes (y): a biomassa e o carbono florestal, obtidos indiretamente do inventário florestal contínuo do Programa de Pesquisas Ecológicas de Longa Duração (PELD), e como variáveis independentes (x) as bandas espectrais e os índices de vegetação (IV). O tratamento estatístico envolveu a análise da matriz de correlação (r) entre as variáveis x e y; a análise de regressão linear simples, não linear e múltipla, com as seguintes estatísticas: R², R²aj., Syx, Syx% e dispersão dos resíduos, Por fim, elaboraram-se mapas temáticos para estas variáveis biofísicas. Como as correlações (r) entre as variáveis biofísicas e espectrais do sensor ASTER (15m) foram baixas, a imagem foi degradada para 30m e 45m. Na resolução de 30m, o uso dos dados ASTER foi superior ao seu uso na resolução original. Não houve diferenças significativas nos valores de r entre o uso das bandas ou dos IVs para predizer as variáveis biofísicas. Regressões lineares simples se mostraram mais adequadas do que as regressões não lineares (exponenciais e logarítmicas) e múltiplas para estimar as variáveis biofísicas, apresentando erros inferiores aos estabelecidos nas campanhas de inventários tradicionais (α < 5%). Os mapas gerados a partir do sensor ASTER 30m foram mais fidedignos ao retratar a distribuição espacial destas variáveis na área de estudo devido à alta correspondência destes com os valores observados no inventário (PELD). Assim, a equação de regressão de carbono florestal a partir do ASTER foi usada na criação do projeto REDD+. A estimativa de biomassa e de carbono florestal da FOM mediante uso de dados de sensores ópticos foi adequada, com possibilidades de ser expandida para extensas áreas. A metodologia, portanto, se mostrou apropriada para ao monitoramento, relatório e verificação de estoques de carbono em florestas.
publishDate 2013
dc.date.accessioned.fl_str_mv 2013-10-31T01:54:59Z
dc.date.issued.fl_str_mv 2013
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/79773
dc.identifier.nrb.pt_BR.fl_str_mv 000902395
url http://hdl.handle.net/10183/79773
identifier_str_mv 000902395
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/79773/1/000902395.pdf
http://www.lume.ufrgs.br/bitstream/10183/79773/2/000902395.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/79773/3/000902395.pdf.jpg
bitstream.checksum.fl_str_mv af8427e9028c39d0db6bd5cc8cc082ad
b0981cf7f2d32a6ac1fdaba3c1742ed5
acccaf7a999e9abbbe7ed3051a96119e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085272387321856