Análise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RS

Detalhes bibliográficos
Autor(a) principal: González, José David Montoya
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/170412
Resumo: O Eragrostis plana Nees (capim-annoni-2 ou capim annoni) é uma gramínea exótica trazida da África do Sul nos anos cinquenta e atualmente tem presença em aproximadamente 10% da área total do bioma Pampa, sendo a espécie mais invasiva desse bioma. Tendo em conta a grande capacidade desta espécie para se estabelecer em uma ampla variedade de condições ambientais, os efeitos ambientais e econômicos negativos envolvidos, bem como sua dificuldade de erradicação, é importante identificar as áreas mais suscetíveis à invasão em um futuro próximo, para assim aprimorar os planos de manejo e evitar a expansão de áreas infestadas. O presente trabalho foi desenvolvido no município de Aceguá – RS, com o objetivo de identificar quais áreas são as mais suscetíveis à invasão. Foram aplicados os modelos de distribuição de espécies MAXENT e GARP tendo como dados de entrada as variáveis ambientais calculadas a partir imagens espectrais, modelo numérico de elevação, mapa de solos e mapa de vias. Como algumas variáveis originalmente têm resolução espacial de 250 m e outras de 30 m, foi feita uma reamostragem tanto a 30 m como a 250 m para comparar os resultados dos modelos nas duas resoluções espaciais. Para diminuir o número de variáveis de entrada foi feita uma análise de correlação para eliminar as variáveis com alta correlação. Também foi feito o teste Jackknife para avaliar quais variáveis contribuem mais na modelagem espacial da distribuição do capim annoni. Os dois modelos, tanto no treinamento como na validação, nas duas resoluções espaciais, apresentam valores médios de ajuste de AUC acima de 0,7, sendo considerado um bom ajuste. Foram empregados três métodos para calcular os limiares ótimos de corte para cada um dos modelos: 1) sensibilidade igual à especificidade; 2) soma entre a sensibilidade e a especificidade máxima; Os limiares obtidos foram 42 para MAXENT_250, 39 para MAXENT_30, 69 para GARP_250 e 68 para GARP_30. Após a aplicação dos limiares, verificou-se que o modelo GARP prediz uma área maior que o MAXENT, 33,20% em comparação com 24,60% na resolução espacial de 250 m, e 35,83% contra 27,17% na resolução espacial de 30 m. Verificou-se também que o GARP possui melhor capacidade de generalização, o qual é importante para modelar espécies invasoras. Os dois modelos predizem com presença uma área comum de 21,23% e 23,94% nas resoluções espaciais de 250 m e 30 m respectivamente. As pastagens são as classes de uso que apresentam uma maior suscetibilidade à invasão de capim anonni. Ao cruzar os resultados dos modelos de suscetibilidade à invasão de capim annoni, com resolução espacial de 30 m, e as áreas de pastagens que estão sob alta pressão de pastejo, verificou-se que o modelo MAXENT consegue predizer uma suscetibilidade à invasão em 24,51% das áreas e o modelo GARP prediz 37,95% de suscetibilidade à invasão. As comparações entre as duas resoluções espaciais demonstrou que não há muitas diferenças em termos de quantificação de área, sendo que o principal ganho foi o detalhamento espacial, o qual foi obtido com um alto custo computacional.
id URGS_8cbe67f065e829db20d95465def65da2
oai_identifier_str oai:www.lume.ufrgs.br:10183/170412
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling González, José David MontoyaFonseca, Eliana Lima daPerez, Naylor Bastiani2017-11-18T02:35:29Z2017http://hdl.handle.net/10183/170412001052000O Eragrostis plana Nees (capim-annoni-2 ou capim annoni) é uma gramínea exótica trazida da África do Sul nos anos cinquenta e atualmente tem presença em aproximadamente 10% da área total do bioma Pampa, sendo a espécie mais invasiva desse bioma. Tendo em conta a grande capacidade desta espécie para se estabelecer em uma ampla variedade de condições ambientais, os efeitos ambientais e econômicos negativos envolvidos, bem como sua dificuldade de erradicação, é importante identificar as áreas mais suscetíveis à invasão em um futuro próximo, para assim aprimorar os planos de manejo e evitar a expansão de áreas infestadas. O presente trabalho foi desenvolvido no município de Aceguá – RS, com o objetivo de identificar quais áreas são as mais suscetíveis à invasão. Foram aplicados os modelos de distribuição de espécies MAXENT e GARP tendo como dados de entrada as variáveis ambientais calculadas a partir imagens espectrais, modelo numérico de elevação, mapa de solos e mapa de vias. Como algumas variáveis originalmente têm resolução espacial de 250 m e outras de 30 m, foi feita uma reamostragem tanto a 30 m como a 250 m para comparar os resultados dos modelos nas duas resoluções espaciais. Para diminuir o número de variáveis de entrada foi feita uma análise de correlação para eliminar as variáveis com alta correlação. Também foi feito o teste Jackknife para avaliar quais variáveis contribuem mais na modelagem espacial da distribuição do capim annoni. Os dois modelos, tanto no treinamento como na validação, nas duas resoluções espaciais, apresentam valores médios de ajuste de AUC acima de 0,7, sendo considerado um bom ajuste. Foram empregados três métodos para calcular os limiares ótimos de corte para cada um dos modelos: 1) sensibilidade igual à especificidade; 2) soma entre a sensibilidade e a especificidade máxima; Os limiares obtidos foram 42 para MAXENT_250, 39 para MAXENT_30, 69 para GARP_250 e 68 para GARP_30. Após a aplicação dos limiares, verificou-se que o modelo GARP prediz uma área maior que o MAXENT, 33,20% em comparação com 24,60% na resolução espacial de 250 m, e 35,83% contra 27,17% na resolução espacial de 30 m. Verificou-se também que o GARP possui melhor capacidade de generalização, o qual é importante para modelar espécies invasoras. Os dois modelos predizem com presença uma área comum de 21,23% e 23,94% nas resoluções espaciais de 250 m e 30 m respectivamente. As pastagens são as classes de uso que apresentam uma maior suscetibilidade à invasão de capim anonni. Ao cruzar os resultados dos modelos de suscetibilidade à invasão de capim annoni, com resolução espacial de 30 m, e as áreas de pastagens que estão sob alta pressão de pastejo, verificou-se que o modelo MAXENT consegue predizer uma suscetibilidade à invasão em 24,51% das áreas e o modelo GARP prediz 37,95% de suscetibilidade à invasão. As comparações entre as duas resoluções espaciais demonstrou que não há muitas diferenças em termos de quantificação de área, sendo que o principal ganho foi o detalhamento espacial, o qual foi obtido com um alto custo computacional.The Eragrostis plana Nees (South African lovegrass), is an exotic grassy plant originally from South Africa, introduced in the 50s and is currently present in approximately 10% of the total area of the Pampa biome, being the most invasive species in this biome. Considering the large capacity of the South African lovegrass establishing itself in a wide variety of environmental conditions, the negative effects, both environmental and economical that it involves, as well as its difficulty of eradication, it is important to identify the invasion most susceptible areas in the near future, in order to improve the management to prevent the spread of infested areas. This research was developed in the municipality of Aceguá – RS, with the objective of identifying which areas are most susceptible to invasion. The MAXENT and GARP models of distribution of species were applied, having as input data the environmental variables calculated from spectral images, digital elevation model, soil map and road map. As some variables originally had spatial resolution of 250m and others of 30m, a resample was done at both 30m and 250m in order to compare the models results in these two spatial resolutions. To reduce the input variables amount, a correlation analysis was performed to eliminate the high correlation variables. The Jackknife test was also used to evaluate which variables contribute most to the South African lovegrass distribution spatial modeling. Both models, at the two spatial resolutions, during the training and the validation steps, present mean values of AUC adjustment above 0.7, being considered a good fit. Three methods were used to calculate the optimal thresholds for each model: 1) the sensitivity equals to the specificity; 2) the sum between sensitivity and specificity is the maximum; 3) the distance between the ROC curve and left top corner is minimum. The calculated thresholds were 42 for MAXENT_250, 39 for MAXENT_30, 69 for GARP_250 and 68 for GARP_30. After applying these thresholds, it was verified that the GARP model predicts an area greater than MAXENT, 33.20% compared to 24.60% for the spatial resolution of 250m, and 35.83% against 27.17% in the spatial resolution of 30m. It was also verified that GARP has a better generalization capacity, which is important for modeling invasive species patterns. Both models predict a common area with susceptible to invasion of 21.23% and 23.94% in spatial resolutions of 250m and 30m respectively. The grasslands are the land cover that presents a South African lovegrass invasion greater susceptibility. Cross-referencing the susceptibility invasion models with the overgrazing areas at 30m of spatial resolution, it was verified that the model MAXENT can predict a susceptibility to invasion in 24.51% of the areas and the GARP model predicts 37.95% susceptibility to invasion. Comparisons between the two spatial resolutions showed that there are not many differences in terms of area quantification, where the main gain was spatial detailing, which was obtained with a high computational cost.application/pdfporCapim annoniEragrostis planaBioma PampaRemote sensingSouth African lovegrassEragrostis planaMAXENTGARPSpecies distribution modelsAnálise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RSinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulCentro Estadual de Pesquisas em Sensoriamento Remoto e MeteorologiaPrograma de Pós-Graduação em Sensoriamento RemotoPorto Alegre, BR-RS2017mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001052000.pdf001052000.pdfTexto completoapplication/pdf16923814http://www.lume.ufrgs.br/bitstream/10183/170412/1/001052000.pdf9ac58b2f4eb5873e148e5dd112c5983cMD51TEXT001052000.pdf.txt001052000.pdf.txtExtracted Texttext/plain144047http://www.lume.ufrgs.br/bitstream/10183/170412/2/001052000.pdf.txtc145d9c5db53e2bfacf05b407e59b292MD5210183/1704122018-07-14 03:04:18.574909oai:www.lume.ufrgs.br:10183/170412Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-07-14T06:04:18Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Análise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RS
title Análise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RS
spellingShingle Análise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RS
González, José David Montoya
Capim annoni
Eragrostis plana
Bioma Pampa
Remote sensing
South African lovegrass
Eragrostis plana
MAXENT
GARP
Species distribution models
title_short Análise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RS
title_full Análise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RS
title_fullStr Análise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RS
title_full_unstemmed Análise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RS
title_sort Análise da susceptibilidade à invasão do capim-annoni-2 sobre áreas do bioma Pampa do município de Aceguá-RS
author González, José David Montoya
author_facet González, José David Montoya
author_role author
dc.contributor.author.fl_str_mv González, José David Montoya
dc.contributor.advisor1.fl_str_mv Fonseca, Eliana Lima da
dc.contributor.advisor-co1.fl_str_mv Perez, Naylor Bastiani
contributor_str_mv Fonseca, Eliana Lima da
Perez, Naylor Bastiani
dc.subject.por.fl_str_mv Capim annoni
Eragrostis plana
Bioma Pampa
topic Capim annoni
Eragrostis plana
Bioma Pampa
Remote sensing
South African lovegrass
Eragrostis plana
MAXENT
GARP
Species distribution models
dc.subject.eng.fl_str_mv Remote sensing
South African lovegrass
Eragrostis plana
MAXENT
GARP
Species distribution models
description O Eragrostis plana Nees (capim-annoni-2 ou capim annoni) é uma gramínea exótica trazida da África do Sul nos anos cinquenta e atualmente tem presença em aproximadamente 10% da área total do bioma Pampa, sendo a espécie mais invasiva desse bioma. Tendo em conta a grande capacidade desta espécie para se estabelecer em uma ampla variedade de condições ambientais, os efeitos ambientais e econômicos negativos envolvidos, bem como sua dificuldade de erradicação, é importante identificar as áreas mais suscetíveis à invasão em um futuro próximo, para assim aprimorar os planos de manejo e evitar a expansão de áreas infestadas. O presente trabalho foi desenvolvido no município de Aceguá – RS, com o objetivo de identificar quais áreas são as mais suscetíveis à invasão. Foram aplicados os modelos de distribuição de espécies MAXENT e GARP tendo como dados de entrada as variáveis ambientais calculadas a partir imagens espectrais, modelo numérico de elevação, mapa de solos e mapa de vias. Como algumas variáveis originalmente têm resolução espacial de 250 m e outras de 30 m, foi feita uma reamostragem tanto a 30 m como a 250 m para comparar os resultados dos modelos nas duas resoluções espaciais. Para diminuir o número de variáveis de entrada foi feita uma análise de correlação para eliminar as variáveis com alta correlação. Também foi feito o teste Jackknife para avaliar quais variáveis contribuem mais na modelagem espacial da distribuição do capim annoni. Os dois modelos, tanto no treinamento como na validação, nas duas resoluções espaciais, apresentam valores médios de ajuste de AUC acima de 0,7, sendo considerado um bom ajuste. Foram empregados três métodos para calcular os limiares ótimos de corte para cada um dos modelos: 1) sensibilidade igual à especificidade; 2) soma entre a sensibilidade e a especificidade máxima; Os limiares obtidos foram 42 para MAXENT_250, 39 para MAXENT_30, 69 para GARP_250 e 68 para GARP_30. Após a aplicação dos limiares, verificou-se que o modelo GARP prediz uma área maior que o MAXENT, 33,20% em comparação com 24,60% na resolução espacial de 250 m, e 35,83% contra 27,17% na resolução espacial de 30 m. Verificou-se também que o GARP possui melhor capacidade de generalização, o qual é importante para modelar espécies invasoras. Os dois modelos predizem com presença uma área comum de 21,23% e 23,94% nas resoluções espaciais de 250 m e 30 m respectivamente. As pastagens são as classes de uso que apresentam uma maior suscetibilidade à invasão de capim anonni. Ao cruzar os resultados dos modelos de suscetibilidade à invasão de capim annoni, com resolução espacial de 30 m, e as áreas de pastagens que estão sob alta pressão de pastejo, verificou-se que o modelo MAXENT consegue predizer uma suscetibilidade à invasão em 24,51% das áreas e o modelo GARP prediz 37,95% de suscetibilidade à invasão. As comparações entre as duas resoluções espaciais demonstrou que não há muitas diferenças em termos de quantificação de área, sendo que o principal ganho foi o detalhamento espacial, o qual foi obtido com um alto custo computacional.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-11-18T02:35:29Z
dc.date.issued.fl_str_mv 2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/170412
dc.identifier.nrb.pt_BR.fl_str_mv 001052000
url http://hdl.handle.net/10183/170412
identifier_str_mv 001052000
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/170412/1/001052000.pdf
http://www.lume.ufrgs.br/bitstream/10183/170412/2/001052000.pdf.txt
bitstream.checksum.fl_str_mv 9ac58b2f4eb5873e148e5dd112c5983c
c145d9c5db53e2bfacf05b407e59b292
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085425075716096