A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real

Detalhes bibliográficos
Autor(a) principal: Reiser, Renata Hax Sander
Data de Publicação: 1997
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/18235
Resumo: Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas.
id URGS_9a673079d75a5da386af05197613f0fd
oai_identifier_str oai:www.lume.ufrgs.br:10183/18235
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Reiser, Renata Hax SanderClaudio, Dalcidio MoraesCosta, Antonio Carlos da Rocha2010-01-09T04:14:30Z1997http://hdl.handle.net/10183/18235000152494Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas.In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.application/pdfporAnálise numéricaAnalise : IntervalosTeoria : DomíniosEspacos coerentesInterval theoryScientific computationDomain theoryCoherence spacesConstruction of real numbersLinear functionsCategoriesA categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise realThe computable category of the coherence spaces generated by basic sets with an application in real analysis info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaCurso de Pós-Graduação em Ciência da ComputaçãoPorto Alegre, BR-RS1997mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000152494.pdf000152494.pdfTexto completoapplication/pdf18173090http://www.lume.ufrgs.br/bitstream/10183/18235/1/000152494.pdf4ec3bed491a7bab0cf1d5bdf34eec5a3MD51TEXT000152494.pdf.txt000152494.pdf.txtExtracted Texttext/plain218394http://www.lume.ufrgs.br/bitstream/10183/18235/2/000152494.pdf.txt480d1a722476b0c6e313c2147ed9677bMD52THUMBNAIL000152494.pdf.jpg000152494.pdf.jpgGenerated Thumbnailimage/jpeg1261http://www.lume.ufrgs.br/bitstream/10183/18235/3/000152494.pdf.jpge8de830f5a6468b0dc09f5fdf59dafb8MD5310183/182352018-10-08 09:08:35.067oai:www.lume.ufrgs.br:10183/18235Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-08T12:08:35Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real
dc.title.alternative.en.fl_str_mv The computable category of the coherence spaces generated by basic sets with an application in real analysis
title A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real
spellingShingle A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real
Reiser, Renata Hax Sander
Análise numérica
Analise : Intervalos
Teoria : Domínios
Espacos coerentes
Interval theory
Scientific computation
Domain theory
Coherence spaces
Construction of real numbers
Linear functions
Categories
title_short A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real
title_full A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real
title_fullStr A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real
title_full_unstemmed A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real
title_sort A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real
author Reiser, Renata Hax Sander
author_facet Reiser, Renata Hax Sander
author_role author
dc.contributor.author.fl_str_mv Reiser, Renata Hax Sander
dc.contributor.advisor1.fl_str_mv Claudio, Dalcidio Moraes
dc.contributor.advisor-co1.fl_str_mv Costa, Antonio Carlos da Rocha
contributor_str_mv Claudio, Dalcidio Moraes
Costa, Antonio Carlos da Rocha
dc.subject.por.fl_str_mv Análise numérica
Analise : Intervalos
Teoria : Domínios
Espacos coerentes
topic Análise numérica
Analise : Intervalos
Teoria : Domínios
Espacos coerentes
Interval theory
Scientific computation
Domain theory
Coherence spaces
Construction of real numbers
Linear functions
Categories
dc.subject.eng.fl_str_mv Interval theory
Scientific computation
Domain theory
Coherence spaces
Construction of real numbers
Linear functions
Categories
description Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas.
publishDate 1997
dc.date.issued.fl_str_mv 1997
dc.date.accessioned.fl_str_mv 2010-01-09T04:14:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/18235
dc.identifier.nrb.pt_BR.fl_str_mv 000152494
url http://hdl.handle.net/10183/18235
identifier_str_mv 000152494
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/18235/1/000152494.pdf
http://www.lume.ufrgs.br/bitstream/10183/18235/2/000152494.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/18235/3/000152494.pdf.jpg
bitstream.checksum.fl_str_mv 4ec3bed491a7bab0cf1d5bdf34eec5a3
480d1a722476b0c6e313c2147ed9677b
e8de830f5a6468b0dc09f5fdf59dafb8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085162705223680