Segmentação de imagens coloridas por árvores bayesianas adaptativas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/165108 |
Resumo: | A segmentação de imagens consiste em urna tarefa de fundamental importância para diferentes aplicações em visão computacional, tais como por exemplo, o reconhecimento e o rastreamento de objetos, a segmentação de tomores/lesões em aplicações médicas, podendo também servir de auxílio em sistemas de reconhecimento facial. Embora exista uma extensa literatora abordando o problema de segmentação de imagens, tal tópico ainda continua em aberto para pesquisa. Particularmente, a tarefa de segmentar imagens coloridas é desafiadora devido as diversas inomogeneidades de cor, texturas e formas presentes nas feições descritivas das imagens. Este trabalho apresenta um novo método de clustering para abordar o problema da segmentação de imagens coloridas. Nós desenvolvemos uma abordagem Bayesiana para procura de máximos de densidade em urna distribuição discreta de dados, e representamos os dados de forma hierárquica originando clusters adaptativos a cada nível da hierarquia. Nós aplicamos o método de clustering proposto no problema de segmentação de imagens coloridas, aproveitando sua estrutura hierárquica, baseada em propriedades de árvores direcionadas, para representar hierarquicamente uma imagem colorida. Os experimentos realizados revelaram que o método de clustering proposto, aplicado ao problema de segmentação de imagens coloridas, obteve para a medida de performance Probabilistic Rand lndex (PRI) o valor de 0.8148 e para a medida Global Consistency Error (GCE) o valor 0.1701, superando um total de vinte e um métodos previamente propostos na literatura para o banco de dados BSD300. Comparações visuais confirmaram a competitividade da nossa abordagem em relação aos demais métodos testados. Estes resultados enfatizam a potencialidade do nosso método de clustering para abordar outras aplicações no domínio de Visão Computacional e Reconhecimento de Padrões. |
id |
URGS_a3be34f7efe1214f5403c3cb02058bb9 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/165108 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Peixoto, Guilherme Garcia SchuScharcanski, Jacob2017-08-11T02:35:52Z2017http://hdl.handle.net/10183/165108001044740A segmentação de imagens consiste em urna tarefa de fundamental importância para diferentes aplicações em visão computacional, tais como por exemplo, o reconhecimento e o rastreamento de objetos, a segmentação de tomores/lesões em aplicações médicas, podendo também servir de auxílio em sistemas de reconhecimento facial. Embora exista uma extensa literatora abordando o problema de segmentação de imagens, tal tópico ainda continua em aberto para pesquisa. Particularmente, a tarefa de segmentar imagens coloridas é desafiadora devido as diversas inomogeneidades de cor, texturas e formas presentes nas feições descritivas das imagens. Este trabalho apresenta um novo método de clustering para abordar o problema da segmentação de imagens coloridas. Nós desenvolvemos uma abordagem Bayesiana para procura de máximos de densidade em urna distribuição discreta de dados, e representamos os dados de forma hierárquica originando clusters adaptativos a cada nível da hierarquia. Nós aplicamos o método de clustering proposto no problema de segmentação de imagens coloridas, aproveitando sua estrutura hierárquica, baseada em propriedades de árvores direcionadas, para representar hierarquicamente uma imagem colorida. Os experimentos realizados revelaram que o método de clustering proposto, aplicado ao problema de segmentação de imagens coloridas, obteve para a medida de performance Probabilistic Rand lndex (PRI) o valor de 0.8148 e para a medida Global Consistency Error (GCE) o valor 0.1701, superando um total de vinte e um métodos previamente propostos na literatura para o banco de dados BSD300. Comparações visuais confirmaram a competitividade da nossa abordagem em relação aos demais métodos testados. Estes resultados enfatizam a potencialidade do nosso método de clustering para abordar outras aplicações no domínio de Visão Computacional e Reconhecimento de Padrões.Image segmentation is an essential task for several computer vision applications, such as object recognition, tracking and image retrieval. Although extensively studied in the literature, the problem of image segmentation remains an open topic of research. Particularly, the task of segmenting color images is challenging due to the inhomogeneities in the color regions encountered in natural scenes, often caused by the shapes of surfaces and their interactions with the illumination sources (e.g. causing shading and highlights) This work presents a novel non-supervised classification method. We develop a Bayesian framework for seeking modes on the underlying discrete distribution of data and we represent data hierarchically originating adaptive clusters at each levei of hierarchy. We apply the prnposal clustering technique for tackling the problem of color irnage segmentation, taking advantage of its hierarchical structure based on hierarchy properties of directed trees for representing fine to coarse leveis of details in an image. The experiments herein conducted revealed that the proposed clustering method applied to the color image segmentation problem, achieved for the Probabilistic Rand Index (PRI) performance measure the value of 0.8148 and for the Global Consistency Error (GCE) the value of 0.1701, outperforming twenty-three methods previously proposed in the literature for the BSD300 dataset. Visual comparison confirmed the competitiveness of our approach towards state-of-art methods publicly available in the literature. These results emphasize the great potential of our proposed clustering technique for tackling other applications in computer vision and pattem recognition.application/pdfporSegmentação de imagemAlgoritmosTeoria da decisãoClusteringBayesian decision theoryDirected treesColor image segmentationSegmentação de imagens coloridas por árvores bayesianas adaptativasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPrograma de Pós-Graduação em Engenharia ElétricaPorto Alegre, BR-RS2017mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001044740.pdf001044740.pdfTexto completoapplication/pdf6060650http://www.lume.ufrgs.br/bitstream/10183/165108/1/001044740.pdff6e42bf7cbfcf53e6193bea7824f5571MD51TEXT001044740.pdf.txt001044740.pdf.txtExtracted Texttext/plain180254http://www.lume.ufrgs.br/bitstream/10183/165108/2/001044740.pdf.txtd68c72a6df32d10d1a341db70a222613MD52THUMBNAIL001044740.pdf.jpg001044740.pdf.jpgGenerated Thumbnailimage/jpeg1053http://www.lume.ufrgs.br/bitstream/10183/165108/3/001044740.pdf.jpgf6eb00f8a31f830bbd2f8b9f28d74ab7MD5310183/1651082018-10-22 08:13:28.156oai:www.lume.ufrgs.br:10183/165108Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-22T11:13:28Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Segmentação de imagens coloridas por árvores bayesianas adaptativas |
title |
Segmentação de imagens coloridas por árvores bayesianas adaptativas |
spellingShingle |
Segmentação de imagens coloridas por árvores bayesianas adaptativas Peixoto, Guilherme Garcia Schu Segmentação de imagem Algoritmos Teoria da decisão Clustering Bayesian decision theory Directed trees Color image segmentation |
title_short |
Segmentação de imagens coloridas por árvores bayesianas adaptativas |
title_full |
Segmentação de imagens coloridas por árvores bayesianas adaptativas |
title_fullStr |
Segmentação de imagens coloridas por árvores bayesianas adaptativas |
title_full_unstemmed |
Segmentação de imagens coloridas por árvores bayesianas adaptativas |
title_sort |
Segmentação de imagens coloridas por árvores bayesianas adaptativas |
author |
Peixoto, Guilherme Garcia Schu |
author_facet |
Peixoto, Guilherme Garcia Schu |
author_role |
author |
dc.contributor.author.fl_str_mv |
Peixoto, Guilherme Garcia Schu |
dc.contributor.advisor1.fl_str_mv |
Scharcanski, Jacob |
contributor_str_mv |
Scharcanski, Jacob |
dc.subject.por.fl_str_mv |
Segmentação de imagem Algoritmos Teoria da decisão |
topic |
Segmentação de imagem Algoritmos Teoria da decisão Clustering Bayesian decision theory Directed trees Color image segmentation |
dc.subject.eng.fl_str_mv |
Clustering Bayesian decision theory Directed trees Color image segmentation |
description |
A segmentação de imagens consiste em urna tarefa de fundamental importância para diferentes aplicações em visão computacional, tais como por exemplo, o reconhecimento e o rastreamento de objetos, a segmentação de tomores/lesões em aplicações médicas, podendo também servir de auxílio em sistemas de reconhecimento facial. Embora exista uma extensa literatora abordando o problema de segmentação de imagens, tal tópico ainda continua em aberto para pesquisa. Particularmente, a tarefa de segmentar imagens coloridas é desafiadora devido as diversas inomogeneidades de cor, texturas e formas presentes nas feições descritivas das imagens. Este trabalho apresenta um novo método de clustering para abordar o problema da segmentação de imagens coloridas. Nós desenvolvemos uma abordagem Bayesiana para procura de máximos de densidade em urna distribuição discreta de dados, e representamos os dados de forma hierárquica originando clusters adaptativos a cada nível da hierarquia. Nós aplicamos o método de clustering proposto no problema de segmentação de imagens coloridas, aproveitando sua estrutura hierárquica, baseada em propriedades de árvores direcionadas, para representar hierarquicamente uma imagem colorida. Os experimentos realizados revelaram que o método de clustering proposto, aplicado ao problema de segmentação de imagens coloridas, obteve para a medida de performance Probabilistic Rand lndex (PRI) o valor de 0.8148 e para a medida Global Consistency Error (GCE) o valor 0.1701, superando um total de vinte e um métodos previamente propostos na literatura para o banco de dados BSD300. Comparações visuais confirmaram a competitividade da nossa abordagem em relação aos demais métodos testados. Estes resultados enfatizam a potencialidade do nosso método de clustering para abordar outras aplicações no domínio de Visão Computacional e Reconhecimento de Padrões. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-08-11T02:35:52Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/165108 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001044740 |
url |
http://hdl.handle.net/10183/165108 |
identifier_str_mv |
001044740 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/165108/1/001044740.pdf http://www.lume.ufrgs.br/bitstream/10183/165108/2/001044740.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/165108/3/001044740.pdf.jpg |
bitstream.checksum.fl_str_mv |
f6e42bf7cbfcf53e6193bea7824f5571 d68c72a6df32d10d1a341db70a222613 f6eb00f8a31f830bbd2f8b9f28d74ab7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1810085416045379584 |