Numerical simulation of cell aspiration by micropipette

Detalhes bibliográficos
Autor(a) principal: Ourique, Gustavo
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/276500
Resumo: As células formam os blocos de construção fundamentais dos organismos vivos e entender as propriedades mecânicas dos tecidos que elas formam tem implicações significativas na progressão do câncer, na cicatrização de feridas e na embriologia. Neste estudo, apresentamos um modelo bidimensional onde cada célula consiste em partículas conectadas por molas, funcionando como forças de perímetro, e um segundo termo desempenhando o papel de conservação de área. O objetivo deste trabalho é investigar os parâmetros mecânicos compatíveis com a aspiração por micropipeta de um grupo formado por essas células e relacioná-los com o comportamento macroscópico de um tecido. Para validar a precisão de nosso modelo celular, realizamos simulações de aspiração por micropipeta em células individuais. Nossos resultados demonstram que um modelo mecânico unidimensional pode descrever efetivamente o comportamento de células individuais. Esse achado sugere que medidas macroscópicas, como estiramento celular, podem ser usadas para extrair parâmetros celulares microscópicos. Também observamos que a atividade celular não influencia significativamente as propriedades mecânicas das células neste cenário específico. Indo além das células individuais, estendemos nossas simulações para agregados celulares para explorar seus parâmetros internos. Ao submeter agregados celulares à aspiração por micropipeta, pudemos mapear parâmetros internos que poderiam ser potencialmente aplicados a células reais. Descobrimos que em nosso modelo a adesão celular não impacta a velocidade do fluxo viscoso a menos que seja forte o suficiente para obstruí-lo completamente. Além disso, descobrimos uma correlação linear entre a pressão mínima de aspiração necessária para que os agregados celulares sejam aspirados em um fluxo viscoplástico contínuo e a força de adesão da membrana celular. Esse resultado destaca a importância de considerar as propriedades adesivas ao estudar agregados celulares e seu comportamento sob força. Em conclusão, nosso estudo contribui com novos insights sobre os parâmetros mecânicos de tecidos, aprimorando a compreensão da dinâmica de tecidos celulares.
id URGS_a8d06ba70eac612a621a4f5067240ca5
oai_identifier_str oai:www.lume.ufrgs.br:10183/276500
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Ourique, GustavoBrunnet, Leonardo Gregory2024-07-19T06:21:22Z2024http://hdl.handle.net/10183/276500001201424As células formam os blocos de construção fundamentais dos organismos vivos e entender as propriedades mecânicas dos tecidos que elas formam tem implicações significativas na progressão do câncer, na cicatrização de feridas e na embriologia. Neste estudo, apresentamos um modelo bidimensional onde cada célula consiste em partículas conectadas por molas, funcionando como forças de perímetro, e um segundo termo desempenhando o papel de conservação de área. O objetivo deste trabalho é investigar os parâmetros mecânicos compatíveis com a aspiração por micropipeta de um grupo formado por essas células e relacioná-los com o comportamento macroscópico de um tecido. Para validar a precisão de nosso modelo celular, realizamos simulações de aspiração por micropipeta em células individuais. Nossos resultados demonstram que um modelo mecânico unidimensional pode descrever efetivamente o comportamento de células individuais. Esse achado sugere que medidas macroscópicas, como estiramento celular, podem ser usadas para extrair parâmetros celulares microscópicos. Também observamos que a atividade celular não influencia significativamente as propriedades mecânicas das células neste cenário específico. Indo além das células individuais, estendemos nossas simulações para agregados celulares para explorar seus parâmetros internos. Ao submeter agregados celulares à aspiração por micropipeta, pudemos mapear parâmetros internos que poderiam ser potencialmente aplicados a células reais. Descobrimos que em nosso modelo a adesão celular não impacta a velocidade do fluxo viscoso a menos que seja forte o suficiente para obstruí-lo completamente. Além disso, descobrimos uma correlação linear entre a pressão mínima de aspiração necessária para que os agregados celulares sejam aspirados em um fluxo viscoplástico contínuo e a força de adesão da membrana celular. Esse resultado destaca a importância de considerar as propriedades adesivas ao estudar agregados celulares e seu comportamento sob força. Em conclusão, nosso estudo contribui com novos insights sobre os parâmetros mecânicos de tecidos, aprimorando a compreensão da dinâmica de tecidos celulares.Cells form the fundamental building blocks of living organisms, and understanding the mechanical properties of the tissues they form has significant implications in cancer progression, wound healing and embryology. In this study, we present a two-dimensional model where each cell consists of particles connected by springs, working as perimeter forces, and a second term playing a role of area conservation. The purpose of our research is to investigate the mechanical parameters compatible with the micropipette aspiration of a group formed with these cells, and relate them with the macroscopic behavior of a tissue. To validate the accuracy of our cellular model, we conducted micropipette aspiration simulations on single cells. Our results demonstrate that a one-dimensional mechanical model can effectively describe the behavior of single cells. This finding suggests that macroscopic measures, such as cell stretch, can be used to extract microscopic cell parameters. Interestingly, we also observed that cellular activity does not significantly influence the mechanical properties of cells in this particular scenario. Moving beyond single cells, we extended our simulations to cell aggregates to explore their internal parameters. By subjecting cell aggregates to micropipette aspiration, we were able to map internal parameters that could potentially be applied to real cells. We found that, in our model, cellular adhesion does not impact the speed of viscous flow unless it is strong enough to completely obstruct the flow. Furthermore, we discovered a linear correlation between the minimum aspiration pressure required for cell aggregates to be aspirated in a continuous viscous-plastic flow and the strength of cell membrane adhesion. This finding highlights the potential importance of considering adhesive properties when studying cell aggregates and their behavior under force. In conclusion, our research contributes novel insights into the mechanical parameters of tissues, enhancing our understanding of cell tissue dynamics.application/pdfengMovimento celularMicropipetasSimulação numéricaCell movementMicropipetteCell simulationNumerical simulation of cell aspiration by micropipetteSimulação numérica de aspiração de células por micropipeta info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de FísicaPrograma de Pós-Graduação em FísicaPorto Alegre, BR-RS2024doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001201424.pdf.txt001201424.pdf.txtExtracted Texttext/plain91766http://www.lume.ufrgs.br/bitstream/10183/276500/2/001201424.pdf.txt804ae057cccd32568dcc14317737d4bfMD52ORIGINAL001201424.pdfTexto completo (inglês)application/pdf3589437http://www.lume.ufrgs.br/bitstream/10183/276500/1/001201424.pdffa56ce47adcf64cf09c4f8b58bbf3d75MD5110183/2765002024-07-20 06:21:21.397743oai:www.lume.ufrgs.br:10183/276500Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-07-20T09:21:21Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Numerical simulation of cell aspiration by micropipette
dc.title.alternative.pt.fl_str_mv Simulação numérica de aspiração de células por micropipeta
title Numerical simulation of cell aspiration by micropipette
spellingShingle Numerical simulation of cell aspiration by micropipette
Ourique, Gustavo
Movimento celular
Micropipetas
Simulação numérica
Cell movement
Micropipette
Cell simulation
title_short Numerical simulation of cell aspiration by micropipette
title_full Numerical simulation of cell aspiration by micropipette
title_fullStr Numerical simulation of cell aspiration by micropipette
title_full_unstemmed Numerical simulation of cell aspiration by micropipette
title_sort Numerical simulation of cell aspiration by micropipette
author Ourique, Gustavo
author_facet Ourique, Gustavo
author_role author
dc.contributor.author.fl_str_mv Ourique, Gustavo
dc.contributor.advisor1.fl_str_mv Brunnet, Leonardo Gregory
contributor_str_mv Brunnet, Leonardo Gregory
dc.subject.por.fl_str_mv Movimento celular
Micropipetas
Simulação numérica
topic Movimento celular
Micropipetas
Simulação numérica
Cell movement
Micropipette
Cell simulation
dc.subject.eng.fl_str_mv Cell movement
Micropipette
Cell simulation
description As células formam os blocos de construção fundamentais dos organismos vivos e entender as propriedades mecânicas dos tecidos que elas formam tem implicações significativas na progressão do câncer, na cicatrização de feridas e na embriologia. Neste estudo, apresentamos um modelo bidimensional onde cada célula consiste em partículas conectadas por molas, funcionando como forças de perímetro, e um segundo termo desempenhando o papel de conservação de área. O objetivo deste trabalho é investigar os parâmetros mecânicos compatíveis com a aspiração por micropipeta de um grupo formado por essas células e relacioná-los com o comportamento macroscópico de um tecido. Para validar a precisão de nosso modelo celular, realizamos simulações de aspiração por micropipeta em células individuais. Nossos resultados demonstram que um modelo mecânico unidimensional pode descrever efetivamente o comportamento de células individuais. Esse achado sugere que medidas macroscópicas, como estiramento celular, podem ser usadas para extrair parâmetros celulares microscópicos. Também observamos que a atividade celular não influencia significativamente as propriedades mecânicas das células neste cenário específico. Indo além das células individuais, estendemos nossas simulações para agregados celulares para explorar seus parâmetros internos. Ao submeter agregados celulares à aspiração por micropipeta, pudemos mapear parâmetros internos que poderiam ser potencialmente aplicados a células reais. Descobrimos que em nosso modelo a adesão celular não impacta a velocidade do fluxo viscoso a menos que seja forte o suficiente para obstruí-lo completamente. Além disso, descobrimos uma correlação linear entre a pressão mínima de aspiração necessária para que os agregados celulares sejam aspirados em um fluxo viscoplástico contínuo e a força de adesão da membrana celular. Esse resultado destaca a importância de considerar as propriedades adesivas ao estudar agregados celulares e seu comportamento sob força. Em conclusão, nosso estudo contribui com novos insights sobre os parâmetros mecânicos de tecidos, aprimorando a compreensão da dinâmica de tecidos celulares.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-07-19T06:21:22Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/276500
dc.identifier.nrb.pt_BR.fl_str_mv 001201424
url http://hdl.handle.net/10183/276500
identifier_str_mv 001201424
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/276500/2/001201424.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/276500/1/001201424.pdf
bitstream.checksum.fl_str_mv 804ae057cccd32568dcc14317737d4bf
fa56ce47adcf64cf09c4f8b58bbf3d75
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085645850247168