Sistema de reconhecimento de locutor utilizando redes neurais artificiais
Autor(a) principal: | |
---|---|
Data de Publicação: | 1997 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/18277 |
Resumo: | Este trabalho envolve o emprego de recentes tecnologias ligadas a promissora área de Inteligência Computacional e a tradicional área de Processamento de Sinais Digitais. Tem por objetivo o desenvolvimento de uma aplicação especifica na área de Processamento de Voz: o reconhecimento de locutor. Inúmeras aplicações, ligadas principalmente a segurança e controle, são possíveis a partir do domínio da tecnologia de reconhecimento de locutor, tanto no que diz respeito a identificação quanto a verificação de diferentes locutores. O processo de reconhecimento de locutor pode ser dividido em duas grandes fases: extração das características básicas do sinal de voz e classificação. Na fase de extração, procurou-se aplicar os mais recentes avanços na área de Processamento Digital de Sinais ao problema proposto. Neste contexto, foram utilizadas a frequência fundamental e as frequências formantes como parâmetros que identificam o locutor. O primeiro foi obtido através do use da autocorrelação e o segundo foi obtido através da transformada de Fourier. Estes parâmetros foram extraídos na porção da fala onde o trato vocal apresenta uma coarticulação entre dois sons vocálicos. Esta abordagem visa extrair as características desta mudança do aparato vocal. Existem dois tipos de reconhecimento de locutor: identificação (busca-se reconhecer o locutor em uma população) e verificação (busca-se verificar se a identidade alegada é verdadeira). O processo de reconhecimento de locutor é dividido em duas grandes fases: extração das características (envolve aquisição, pré-processamento e extração dos parâmetros característicos do sinal) e classificação (envolve a classificação do sinal amostrado na identificação/verificação do locutor ou não). São apresentadas diversas técnicas para representação do sinal, como analise espectral, medidas de energia, autocorrelação, LPC (Linear Predictive Coding), entre outras. Também são abordadas técnicas para extração de características do sinal, como a frequência fundamental e as frequências formantes. Na fase de classificação, pode-se utilizar diversos métodos convencionais: Cadeias de Markov, Distância Euclidiana, entre outros. Além destes, existem as Redes Neurais Artificiais (RNAs) que são consideradas poderosos classificadores. As RNAs já vêm sendo utilizadas em problemas que envolvem classificações de sinais de voz. Neste trabalho serão estudados os modelos mais utilizados para o problema de reconhecimento de locutor. Assim, o tema principal da Dissertação de Mestrado deste autor é a implementação de um sistema de reconhecimento de locutor utilizando Redes Neurais Artificiais para classificação do locutor. Neste trabalho tamb6m é apresentada uma abordagem para a implementação de um sistema de reconhecimento de locutor utilizando as técnicas convencionais para o processo de classificação do locutor. As técnicas utilizadas são Dynamic Time Warping (DTW) e Vector Quantization (VQ). |
id |
URGS_b7817505c79979ed35f7b96bc3f79714 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/18277 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Adami, Andre GustavoBarone, Dante Augusto Couto2010-01-19T04:14:46Z1997http://hdl.handle.net/10183/18277000212613Este trabalho envolve o emprego de recentes tecnologias ligadas a promissora área de Inteligência Computacional e a tradicional área de Processamento de Sinais Digitais. Tem por objetivo o desenvolvimento de uma aplicação especifica na área de Processamento de Voz: o reconhecimento de locutor. Inúmeras aplicações, ligadas principalmente a segurança e controle, são possíveis a partir do domínio da tecnologia de reconhecimento de locutor, tanto no que diz respeito a identificação quanto a verificação de diferentes locutores. O processo de reconhecimento de locutor pode ser dividido em duas grandes fases: extração das características básicas do sinal de voz e classificação. Na fase de extração, procurou-se aplicar os mais recentes avanços na área de Processamento Digital de Sinais ao problema proposto. Neste contexto, foram utilizadas a frequência fundamental e as frequências formantes como parâmetros que identificam o locutor. O primeiro foi obtido através do use da autocorrelação e o segundo foi obtido através da transformada de Fourier. Estes parâmetros foram extraídos na porção da fala onde o trato vocal apresenta uma coarticulação entre dois sons vocálicos. Esta abordagem visa extrair as características desta mudança do aparato vocal. Existem dois tipos de reconhecimento de locutor: identificação (busca-se reconhecer o locutor em uma população) e verificação (busca-se verificar se a identidade alegada é verdadeira). O processo de reconhecimento de locutor é dividido em duas grandes fases: extração das características (envolve aquisição, pré-processamento e extração dos parâmetros característicos do sinal) e classificação (envolve a classificação do sinal amostrado na identificação/verificação do locutor ou não). São apresentadas diversas técnicas para representação do sinal, como analise espectral, medidas de energia, autocorrelação, LPC (Linear Predictive Coding), entre outras. Também são abordadas técnicas para extração de características do sinal, como a frequência fundamental e as frequências formantes. Na fase de classificação, pode-se utilizar diversos métodos convencionais: Cadeias de Markov, Distância Euclidiana, entre outros. Além destes, existem as Redes Neurais Artificiais (RNAs) que são consideradas poderosos classificadores. As RNAs já vêm sendo utilizadas em problemas que envolvem classificações de sinais de voz. Neste trabalho serão estudados os modelos mais utilizados para o problema de reconhecimento de locutor. Assim, o tema principal da Dissertação de Mestrado deste autor é a implementação de um sistema de reconhecimento de locutor utilizando Redes Neurais Artificiais para classificação do locutor. Neste trabalho tamb6m é apresentada uma abordagem para a implementação de um sistema de reconhecimento de locutor utilizando as técnicas convencionais para o processo de classificação do locutor. As técnicas utilizadas são Dynamic Time Warping (DTW) e Vector Quantization (VQ).This work deals with the application of recent technologies related to the promising research domain of Intelligent Computing (IC) and to the traditional Digital Signal Processing area. This work aims to apply both technologies in a Voice Processing specific application which is the speaker recognition task. Many security control applications can be supported by speaker recognition technology, both in identification and verification of different speakers. The speaker recognition process can be divided into two main phases: basic characteristics extraction from the voice signal and classification. In the extraction phase, one proposed goal was the application of recent advances in DSP theory to the problem approached in this work. In this context, the fundamental frequency and the formant frequencies were employed as parameters to identify the speaker. The first one was obtained through the use of autocorrelation and the second ones were obtained through Fourier transform. These parameters were extracted from the portion of speech where the vocal tract presents a coarticulation between two voiced sounds. This approach is used to extract the characteristics of this apparatus vocal changing. In this work, the Multi-Layer Perceptron (MLP) ANN architecture was investigated in conjunction with the backpropagation learning algorithm. In this sense, some main characteristics extracted from the signal (voice) were used as input parameters to the ANN used. The output of MLP, trained previously with the speakers features, returns the authenticity of that signal. Tests were performed with 10 different male speakers, whose age were in the range from 18 to 24 years. The results are very promising. In this work it is also presented an approach to implement a speaker recognition system by applying conventional methods to the speaker classification process. The methods used are Dynamic Time Warping (DTW) and Vector Quantization (VQ).application/pdfporReconhecimento : PadroesProcessamento : SinaisReconhecimento : VozRedes neuraisVoice recognitionDigital signal processingSpeaker recognitionArtificial neural networksIntelligent computingSistema de reconhecimento de locutor utilizando redes neurais artificiaisArtificial neural networks speaker recognition system info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaCurso de Pós-Graduação em Ciência da ComputaçãoPorto Alegre, BR-RS1997mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000212613.pdf.txt000212613.pdf.txtExtracted Texttext/plain150406http://www.lume.ufrgs.br/bitstream/10183/18277/2/000212613.pdf.txtae0714a3c39564edc850e3adf50bbfb5MD52ORIGINAL000212613.pdf000212613.pdfTexto completoapplication/pdf6116807http://www.lume.ufrgs.br/bitstream/10183/18277/1/000212613.pdfaa055c5063b095f1d4b84a50d14bdf97MD51THUMBNAIL000212613.pdf.jpg000212613.pdf.jpgGenerated Thumbnailimage/jpeg1232http://www.lume.ufrgs.br/bitstream/10183/18277/3/000212613.pdf.jpgbeb98238a5bd86b0acb85a546ffbbbe9MD5310183/182772018-10-17 08:30:13.295oai:www.lume.ufrgs.br:10183/18277Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-17T11:30:13Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Sistema de reconhecimento de locutor utilizando redes neurais artificiais |
dc.title.alternative.en.fl_str_mv |
Artificial neural networks speaker recognition system |
title |
Sistema de reconhecimento de locutor utilizando redes neurais artificiais |
spellingShingle |
Sistema de reconhecimento de locutor utilizando redes neurais artificiais Adami, Andre Gustavo Reconhecimento : Padroes Processamento : Sinais Reconhecimento : Voz Redes neurais Voice recognition Digital signal processing Speaker recognition Artificial neural networks Intelligent computing |
title_short |
Sistema de reconhecimento de locutor utilizando redes neurais artificiais |
title_full |
Sistema de reconhecimento de locutor utilizando redes neurais artificiais |
title_fullStr |
Sistema de reconhecimento de locutor utilizando redes neurais artificiais |
title_full_unstemmed |
Sistema de reconhecimento de locutor utilizando redes neurais artificiais |
title_sort |
Sistema de reconhecimento de locutor utilizando redes neurais artificiais |
author |
Adami, Andre Gustavo |
author_facet |
Adami, Andre Gustavo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Adami, Andre Gustavo |
dc.contributor.advisor1.fl_str_mv |
Barone, Dante Augusto Couto |
contributor_str_mv |
Barone, Dante Augusto Couto |
dc.subject.por.fl_str_mv |
Reconhecimento : Padroes Processamento : Sinais Reconhecimento : Voz Redes neurais |
topic |
Reconhecimento : Padroes Processamento : Sinais Reconhecimento : Voz Redes neurais Voice recognition Digital signal processing Speaker recognition Artificial neural networks Intelligent computing |
dc.subject.eng.fl_str_mv |
Voice recognition Digital signal processing Speaker recognition Artificial neural networks Intelligent computing |
description |
Este trabalho envolve o emprego de recentes tecnologias ligadas a promissora área de Inteligência Computacional e a tradicional área de Processamento de Sinais Digitais. Tem por objetivo o desenvolvimento de uma aplicação especifica na área de Processamento de Voz: o reconhecimento de locutor. Inúmeras aplicações, ligadas principalmente a segurança e controle, são possíveis a partir do domínio da tecnologia de reconhecimento de locutor, tanto no que diz respeito a identificação quanto a verificação de diferentes locutores. O processo de reconhecimento de locutor pode ser dividido em duas grandes fases: extração das características básicas do sinal de voz e classificação. Na fase de extração, procurou-se aplicar os mais recentes avanços na área de Processamento Digital de Sinais ao problema proposto. Neste contexto, foram utilizadas a frequência fundamental e as frequências formantes como parâmetros que identificam o locutor. O primeiro foi obtido através do use da autocorrelação e o segundo foi obtido através da transformada de Fourier. Estes parâmetros foram extraídos na porção da fala onde o trato vocal apresenta uma coarticulação entre dois sons vocálicos. Esta abordagem visa extrair as características desta mudança do aparato vocal. Existem dois tipos de reconhecimento de locutor: identificação (busca-se reconhecer o locutor em uma população) e verificação (busca-se verificar se a identidade alegada é verdadeira). O processo de reconhecimento de locutor é dividido em duas grandes fases: extração das características (envolve aquisição, pré-processamento e extração dos parâmetros característicos do sinal) e classificação (envolve a classificação do sinal amostrado na identificação/verificação do locutor ou não). São apresentadas diversas técnicas para representação do sinal, como analise espectral, medidas de energia, autocorrelação, LPC (Linear Predictive Coding), entre outras. Também são abordadas técnicas para extração de características do sinal, como a frequência fundamental e as frequências formantes. Na fase de classificação, pode-se utilizar diversos métodos convencionais: Cadeias de Markov, Distância Euclidiana, entre outros. Além destes, existem as Redes Neurais Artificiais (RNAs) que são consideradas poderosos classificadores. As RNAs já vêm sendo utilizadas em problemas que envolvem classificações de sinais de voz. Neste trabalho serão estudados os modelos mais utilizados para o problema de reconhecimento de locutor. Assim, o tema principal da Dissertação de Mestrado deste autor é a implementação de um sistema de reconhecimento de locutor utilizando Redes Neurais Artificiais para classificação do locutor. Neste trabalho tamb6m é apresentada uma abordagem para a implementação de um sistema de reconhecimento de locutor utilizando as técnicas convencionais para o processo de classificação do locutor. As técnicas utilizadas são Dynamic Time Warping (DTW) e Vector Quantization (VQ). |
publishDate |
1997 |
dc.date.issued.fl_str_mv |
1997 |
dc.date.accessioned.fl_str_mv |
2010-01-19T04:14:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/18277 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000212613 |
url |
http://hdl.handle.net/10183/18277 |
identifier_str_mv |
000212613 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/18277/2/000212613.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/18277/1/000212613.pdf http://www.lume.ufrgs.br/bitstream/10183/18277/3/000212613.pdf.jpg |
bitstream.checksum.fl_str_mv |
ae0714a3c39564edc850e3adf50bbfb5 aa055c5063b095f1d4b84a50d14bdf97 beb98238a5bd86b0acb85a546ffbbbe9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1810085162841538560 |