Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida
Autor(a) principal: | |
---|---|
Data de Publicação: | 1994 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/148959 |
Resumo: | O presente trabalho descreve a aplicação de um modelo híbrido para sistemas especialistas em um problema de tomada de decisão, do tipo classificatório. O modelo híbrido para sistemas especialistas, denominado SECOX-HI, foi desenvolvido utilizando-se dois mecanismos de representação de conhecimento. O conhecimento é representado por um conjunto de estruturas de dados relacionais e por redes neurais. As estruturas de dados relacionais permitem uma representação flexível e compreensível do conhecimento do domínio, enquanto que as redes neurais possibilitam a automação da aquisição de conhecimento, a partir de uma base de casos, e a implementação do aprendizado indutivo. O modelo de redes neurais utilizado foi o Modelo Neural Combinatório (MNC), capaz de realizar o aprendizado heurístico através de reconhecimento de padrões observados. A metodologia de construção de grafos de conhecimento foi utilizada para capturar o conhecimento dos especialistas sobre o domínio da aplicação. Adicionalmente, os conceitos da lógica nebulosa foram empregados para modelar as variáveis nebulosas do domínio da aplicação, bem como para definir a função de pertinência dos conjuntos nebulosos relacionados a essas variáveis. A metodologia de aquisição de conhecimento e a fase de engenharia de conhecimento são detalhadas no trabalho, assim como a determinação das variáveis nebulosas e os conjuntos nebulosos associados. O modelo híbrido para sistemas especialistas, SECOX-HI, foi aplicado no problema de detecção de regime de operação do reservatório da usina hidroelétrica de Passo Real, no sistema hidroelétrico Jacuí, na companhia estadual de energia elétrica do Estado do Rio Grande do Sul (CEEE). Para a validação do SECOX-HI, montaram-se três versões da base de conhecimento. A primeira versão, Bl, contém os casos de ocorrências históricas levantados no centro de operações do sistema. A segunda versão, B2, foi montada a partir dos grafos de conhecimento colhidos dos especialistas. A terceira versão da base de conhecimento, B3, constituí-se numa base híbrida, formada por porções das versões Bl e B2. Também, para efeito de validação do sistema, foi montada uma base de testes. A base de testes é composta por 30 ocorrências, aleatóriamente selecionadas. A versão Bl do sistema concluiu corretamente 29 (96. 7 %) dos 30 diagnósticos da base de testes. A versão B2 do sistema concluiu corretamente 22 (73.4 %) dos 30 casos apresentados, e a versão híbrida do sistema, B3, concluiu corretamente 27 (90 %) dos 30 casos apresentados. Pelos resultados obtidos na validação do modelo, pode-se verificar a eficiência do formalismo híbrido na representação do conhecimento; a eficiência e aplicabilidade de modelos de redes neurais para a implementação de métodos de aquisição automática de conhecimento, principalmente quando existe um banco de casos disponível para o treinamento da rede neural; a aplicabilidade da tecnologia de sistemas especialistas no suporte à decisão. Como principais contribuições deste trabalho, pode-se destacar a i aplicação da lógica nebulosa numa situação real, para a interpretação e modelagem de conceitos imprecisos; a utilização e validação de uma metodologia para aquisição de conhecimento, baseada em grafos; a especificação e aplicação de um modelo computacional que incorpora a explicitação automática de conhecimento, via registros de ocorrências históricas, e o aprendizado indutivo, pelo refinamento do conhecimento armazenado nas redes neurais. |
id |
URGS_dfd5585274b14e275d06cfb6a0972f6f |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/148959 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Rosa, Sergio Ivan Viademonte daLeao, Beatriz de FariaHoppen, Norberto2016-10-11T02:14:44Z1994http://hdl.handle.net/10183/148959000267481O presente trabalho descreve a aplicação de um modelo híbrido para sistemas especialistas em um problema de tomada de decisão, do tipo classificatório. O modelo híbrido para sistemas especialistas, denominado SECOX-HI, foi desenvolvido utilizando-se dois mecanismos de representação de conhecimento. O conhecimento é representado por um conjunto de estruturas de dados relacionais e por redes neurais. As estruturas de dados relacionais permitem uma representação flexível e compreensível do conhecimento do domínio, enquanto que as redes neurais possibilitam a automação da aquisição de conhecimento, a partir de uma base de casos, e a implementação do aprendizado indutivo. O modelo de redes neurais utilizado foi o Modelo Neural Combinatório (MNC), capaz de realizar o aprendizado heurístico através de reconhecimento de padrões observados. A metodologia de construção de grafos de conhecimento foi utilizada para capturar o conhecimento dos especialistas sobre o domínio da aplicação. Adicionalmente, os conceitos da lógica nebulosa foram empregados para modelar as variáveis nebulosas do domínio da aplicação, bem como para definir a função de pertinência dos conjuntos nebulosos relacionados a essas variáveis. A metodologia de aquisição de conhecimento e a fase de engenharia de conhecimento são detalhadas no trabalho, assim como a determinação das variáveis nebulosas e os conjuntos nebulosos associados. O modelo híbrido para sistemas especialistas, SECOX-HI, foi aplicado no problema de detecção de regime de operação do reservatório da usina hidroelétrica de Passo Real, no sistema hidroelétrico Jacuí, na companhia estadual de energia elétrica do Estado do Rio Grande do Sul (CEEE). Para a validação do SECOX-HI, montaram-se três versões da base de conhecimento. A primeira versão, Bl, contém os casos de ocorrências históricas levantados no centro de operações do sistema. A segunda versão, B2, foi montada a partir dos grafos de conhecimento colhidos dos especialistas. A terceira versão da base de conhecimento, B3, constituí-se numa base híbrida, formada por porções das versões Bl e B2. Também, para efeito de validação do sistema, foi montada uma base de testes. A base de testes é composta por 30 ocorrências, aleatóriamente selecionadas. A versão Bl do sistema concluiu corretamente 29 (96. 7 %) dos 30 diagnósticos da base de testes. A versão B2 do sistema concluiu corretamente 22 (73.4 %) dos 30 casos apresentados, e a versão híbrida do sistema, B3, concluiu corretamente 27 (90 %) dos 30 casos apresentados. Pelos resultados obtidos na validação do modelo, pode-se verificar a eficiência do formalismo híbrido na representação do conhecimento; a eficiência e aplicabilidade de modelos de redes neurais para a implementação de métodos de aquisição automática de conhecimento, principalmente quando existe um banco de casos disponível para o treinamento da rede neural; a aplicabilidade da tecnologia de sistemas especialistas no suporte à decisão. Como principais contribuições deste trabalho, pode-se destacar a i aplicação da lógica nebulosa numa situação real, para a interpretação e modelagem de conceitos imprecisos; a utilização e validação de uma metodologia para aquisição de conhecimento, baseada em grafos; a especificação e aplicação de um modelo computacional que incorpora a explicitação automática de conhecimento, via registros de ocorrências históricas, e o aprendizado indutivo, pelo refinamento do conhecimento armazenado nas redes neurais.This dissertation describes the application of a hybrid model for classification expert systems in a decision making environment. The hybrid model for expert systems, named SECOX-HI, employs two knowledge representation mechanism. The knowledge is represented by a set of relational data structures and neural networks. The relational data structures provide flexible and comprehensible constructs for modeling the domain knowledge. The neural networks provide the means for automatic knowledge acquisition, by a case database, and enable the implementation of machine learning techniques. The Combinatorial Neural Model (CNM) was the architecture chosen for the neural network environment. These model is characterized by its capacity of learning through the recognition of regularities observed in the outside world. The methodology used for knowledge acquisition was the construction of knowledge graphs, extracted from the domain experts. In addition, the fuzzy logic concepts was used to model the fuzzy variables of the application domain, as well as to define the membership functions of the fuzzy sets related to these variables. The knowledge acquisition methodology, the knowledge engineering phase and the especification of the fuzzy variables are fully discussed. The SECOX-HI system was applied at classification of operation states of the floodgates movements from a reservoir in a hydroeletric company named CEEE (Companhia Estadual de Energia Elétrica Rio Grande do Sul). To validate SECOX-HI system, three vers10ns of the knowledge base were consructed. The first version, Bl, was automatically created based on the training of the case database. The case database is formed by records of historicals occurrences retrieved from the databases of the eletric company, CEEE. The second version, B2, is based upon the knowledge graphs extracted from experts in operation of floodgates. The third version, B3, is a hybrid version formed by parts of knowledge base version Bl and B2. To validate these three versions of the knowledge base, 30 cases were randomly selected from the same database that originated the case database, excluding ali cases that had already been previously selected. Version Bl gave 29 (96,7%) correct diagnoses out of 30; version B2 gave 22 (73,4%) correct diagnoses and version B3 gave 27 (90 ,0%) correct diagnoses. These results point to the efficiency of the hybrid formalism to the knowledge representation, the efficiency and applicability of neural networks models to implement the automatic knowledge acquisition methods, mainly when there is a case database available for training the neural model. The results also showed the applicability of expert systems in the role of a decision support tool. The main contribuitions of this research are the application of fuzzy logic m a real world problem to interpret and model imprecise concepts; the using and validation of a knowledge acquisition methodology based on knowledge graphs; the design and application of a computational model that provides automatic knowledge I acquisition by a case database and inductive learning through the refinement of the neural network knowledge.application/pdfporTomada de decisao : Sistema especialista : Sistema de apoio a decisao : CEEEInteligência artificialSistemas especialistasEngenharia : ConhecimentoRepresentacao : ConhecimentoRedes neuraisTomada : DecisaoConexionismoAplicacao de sistemas especialistas no processo decisorio : uma abordagem hibridainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulFaculdade de Ciências EconômicasPrograma de Pós-Graduação em AdministraçãoPorto Alegre, BR-RS1994mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000267481.pdf000267481.pdfTexto completoapplication/pdf15809186http://www.lume.ufrgs.br/bitstream/10183/148959/1/000267481.pdfe2480c977e1d24c5831560c01e21567eMD51TEXT000267481.pdf.txt000267481.pdf.txtExtracted Texttext/plain199880http://www.lume.ufrgs.br/bitstream/10183/148959/2/000267481.pdf.txt61b4bdce9e32f1dfdab499ee17298eecMD52THUMBNAIL000267481.pdf.jpg000267481.pdf.jpgGenerated Thumbnailimage/jpeg1358http://www.lume.ufrgs.br/bitstream/10183/148959/3/000267481.pdf.jpgaf47a4241499a4a51d395d6110479936MD5310183/1489592018-10-29 09:11:34.704oai:www.lume.ufrgs.br:10183/148959Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-29T12:11:34Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida |
title |
Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida |
spellingShingle |
Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida Rosa, Sergio Ivan Viademonte da Tomada de decisao : Sistema especialista : Sistema de apoio a decisao : CEEE Inteligência artificial Sistemas especialistas Engenharia : Conhecimento Representacao : Conhecimento Redes neurais Tomada : Decisao Conexionismo |
title_short |
Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida |
title_full |
Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida |
title_fullStr |
Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida |
title_full_unstemmed |
Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida |
title_sort |
Aplicacao de sistemas especialistas no processo decisorio : uma abordagem hibrida |
author |
Rosa, Sergio Ivan Viademonte da |
author_facet |
Rosa, Sergio Ivan Viademonte da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rosa, Sergio Ivan Viademonte da |
dc.contributor.advisor1.fl_str_mv |
Leao, Beatriz de Faria Hoppen, Norberto |
contributor_str_mv |
Leao, Beatriz de Faria Hoppen, Norberto |
dc.subject.por.fl_str_mv |
Tomada de decisao : Sistema especialista : Sistema de apoio a decisao : CEEE Inteligência artificial Sistemas especialistas Engenharia : Conhecimento Representacao : Conhecimento Redes neurais Tomada : Decisao Conexionismo |
topic |
Tomada de decisao : Sistema especialista : Sistema de apoio a decisao : CEEE Inteligência artificial Sistemas especialistas Engenharia : Conhecimento Representacao : Conhecimento Redes neurais Tomada : Decisao Conexionismo |
description |
O presente trabalho descreve a aplicação de um modelo híbrido para sistemas especialistas em um problema de tomada de decisão, do tipo classificatório. O modelo híbrido para sistemas especialistas, denominado SECOX-HI, foi desenvolvido utilizando-se dois mecanismos de representação de conhecimento. O conhecimento é representado por um conjunto de estruturas de dados relacionais e por redes neurais. As estruturas de dados relacionais permitem uma representação flexível e compreensível do conhecimento do domínio, enquanto que as redes neurais possibilitam a automação da aquisição de conhecimento, a partir de uma base de casos, e a implementação do aprendizado indutivo. O modelo de redes neurais utilizado foi o Modelo Neural Combinatório (MNC), capaz de realizar o aprendizado heurístico através de reconhecimento de padrões observados. A metodologia de construção de grafos de conhecimento foi utilizada para capturar o conhecimento dos especialistas sobre o domínio da aplicação. Adicionalmente, os conceitos da lógica nebulosa foram empregados para modelar as variáveis nebulosas do domínio da aplicação, bem como para definir a função de pertinência dos conjuntos nebulosos relacionados a essas variáveis. A metodologia de aquisição de conhecimento e a fase de engenharia de conhecimento são detalhadas no trabalho, assim como a determinação das variáveis nebulosas e os conjuntos nebulosos associados. O modelo híbrido para sistemas especialistas, SECOX-HI, foi aplicado no problema de detecção de regime de operação do reservatório da usina hidroelétrica de Passo Real, no sistema hidroelétrico Jacuí, na companhia estadual de energia elétrica do Estado do Rio Grande do Sul (CEEE). Para a validação do SECOX-HI, montaram-se três versões da base de conhecimento. A primeira versão, Bl, contém os casos de ocorrências históricas levantados no centro de operações do sistema. A segunda versão, B2, foi montada a partir dos grafos de conhecimento colhidos dos especialistas. A terceira versão da base de conhecimento, B3, constituí-se numa base híbrida, formada por porções das versões Bl e B2. Também, para efeito de validação do sistema, foi montada uma base de testes. A base de testes é composta por 30 ocorrências, aleatóriamente selecionadas. A versão Bl do sistema concluiu corretamente 29 (96. 7 %) dos 30 diagnósticos da base de testes. A versão B2 do sistema concluiu corretamente 22 (73.4 %) dos 30 casos apresentados, e a versão híbrida do sistema, B3, concluiu corretamente 27 (90 %) dos 30 casos apresentados. Pelos resultados obtidos na validação do modelo, pode-se verificar a eficiência do formalismo híbrido na representação do conhecimento; a eficiência e aplicabilidade de modelos de redes neurais para a implementação de métodos de aquisição automática de conhecimento, principalmente quando existe um banco de casos disponível para o treinamento da rede neural; a aplicabilidade da tecnologia de sistemas especialistas no suporte à decisão. Como principais contribuições deste trabalho, pode-se destacar a i aplicação da lógica nebulosa numa situação real, para a interpretação e modelagem de conceitos imprecisos; a utilização e validação de uma metodologia para aquisição de conhecimento, baseada em grafos; a especificação e aplicação de um modelo computacional que incorpora a explicitação automática de conhecimento, via registros de ocorrências históricas, e o aprendizado indutivo, pelo refinamento do conhecimento armazenado nas redes neurais. |
publishDate |
1994 |
dc.date.issued.fl_str_mv |
1994 |
dc.date.accessioned.fl_str_mv |
2016-10-11T02:14:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/148959 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000267481 |
url |
http://hdl.handle.net/10183/148959 |
identifier_str_mv |
000267481 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/148959/1/000267481.pdf http://www.lume.ufrgs.br/bitstream/10183/148959/2/000267481.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/148959/3/000267481.pdf.jpg |
bitstream.checksum.fl_str_mv |
e2480c977e1d24c5831560c01e21567e 61b4bdce9e32f1dfdab499ee17298eec af47a4241499a4a51d395d6110479936 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1810085381530451968 |